子群族的分类空间的有界上同调

IF 0.6 3区 数学 Q3 MATHEMATICS
Kevin Li
{"title":"子群族的分类空间的有界上同调","authors":"Kevin Li","doi":"10.2140/agt.2023.23.933","DOIUrl":null,"url":null,"abstract":"We introduce a bounded version of Bredon cohomology for groups relative to a family of subgroups. Our theory generalizes bounded cohomology and differs from Mineyev--Yaman's relative bounded cohomology for pairs. We obtain cohomological characterizations of relative amenability and relative hyperbolicity, analogous to the results of Johnson and Mineyev for bounded cohomology.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"286 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bounded cohomology of classifying spaces for families of subgroups\",\"authors\":\"Kevin Li\",\"doi\":\"10.2140/agt.2023.23.933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a bounded version of Bredon cohomology for groups relative to a family of subgroups. Our theory generalizes bounded cohomology and differs from Mineyev--Yaman's relative bounded cohomology for pairs. We obtain cohomological characterizations of relative amenability and relative hyperbolicity, analogous to the results of Johnson and Mineyev for bounded cohomology.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"286 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.933\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.933","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们引入了相对于一群子群的群的Bredon上同的一个有界版本。我们的理论推广了有界上同,不同于Mineyev—Yaman关于对的相对有界上同。我们得到了相对可调性和相对双曲性的上同刻画,类似于Johnson和Mineyev关于有界上同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded cohomology of classifying spaces for families of subgroups
We introduce a bounded version of Bredon cohomology for groups relative to a family of subgroups. Our theory generalizes bounded cohomology and differs from Mineyev--Yaman's relative bounded cohomology for pairs. We obtain cohomological characterizations of relative amenability and relative hyperbolicity, analogous to the results of Johnson and Mineyev for bounded cohomology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信