用基于bdd的SAT求解器生成扩展分辨率证明

R. Bryant, Marijn J. H. Heule
{"title":"用基于bdd的SAT求解器生成扩展分辨率证明","authors":"R. Bryant, Marijn J. H. Heule","doi":"10.1145/3595295","DOIUrl":null,"url":null,"abstract":"In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a BDD-based solver, implemented by extending an existing BDD package, to several challenging Boolean satisfiability problems. Our results demonstrate scaling for parity formulas as well as the Urquhart, mutilated chessboard, and pigeonhole problems far beyond that of other proof-generating SAT solvers.","PeriodicalId":93056,"journal":{"name":"Tools and algorithms for the construction and analysis of systems : 26th International Conference, TACAS 2020, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, ...","volume":"68 1","pages":"76 - 93"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Generating Extended Resolution Proofs with a BDD-Based SAT Solver\",\"authors\":\"R. Bryant, Marijn J. H. Heule\",\"doi\":\"10.1145/3595295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a BDD-based solver, implemented by extending an existing BDD package, to several challenging Boolean satisfiability problems. Our results demonstrate scaling for parity formulas as well as the Urquhart, mutilated chessboard, and pigeonhole problems far beyond that of other proof-generating SAT solvers.\",\"PeriodicalId\":93056,\"journal\":{\"name\":\"Tools and algorithms for the construction and analysis of systems : 26th International Conference, TACAS 2020, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, ...\",\"volume\":\"68 1\",\"pages\":\"76 - 93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tools and algorithms for the construction and analysis of systems : 26th International Conference, TACAS 2020, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, ...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3595295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tools and algorithms for the construction and analysis of systems : 26th International Conference, TACAS 2020, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3595295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

2006年,Biere、Jussila和Sinz提出了一个重要的观点,即构造约简有序二值决策图(bdd)的算法背后的底层逻辑可以编码为扩展分辨率逻辑框架中的证明步骤。通过这种方法,基于bdd的布尔可满足性求解器可以生成一个可检查的不满足性证明。这样的证明表明,在不要求用户信任BDD包或构建在其上的SAT求解器的情况下,公式确实是不令人满意的。我们扩展了他们的工作,以实现公式变量的任意存在量化,这是基于bdd的SAT求解器的关键能力。我们通过将基于BDD的求解器(通过扩展现有BDD包实现)应用于几个具有挑战性的布尔可满足性问题,来演示这种方法的实用性。我们的结果证明了奇偶公式的缩放以及厄克特,残破棋盘和鸽子洞问题远远超出了其他证明生成SAT解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Extended Resolution Proofs with a BDD-Based SAT Solver
In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a BDD-based solver, implemented by extending an existing BDD package, to several challenging Boolean satisfiability problems. Our results demonstrate scaling for parity formulas as well as the Urquhart, mutilated chessboard, and pigeonhole problems far beyond that of other proof-generating SAT solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信