随机3流形的小特征值

U. Hamenstaedt, Gabriele Viaggi
{"title":"随机3流形的小特征值","authors":"U. Hamenstaedt, Gabriele Viaggi","doi":"10.1090/tran/8564","DOIUrl":null,"url":null,"abstract":"We show that for every $g\\geq 2$ there exists a number $c=c(g)>0$ such that the smallest positive eigenvalue of a random closed 3-manifold $M$ of Heegaard genus $g$ is at most $c(g)/{\\rm vol}(M)^2$.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Small eigenvalues of random 3-manifolds\",\"authors\":\"U. Hamenstaedt, Gabriele Viaggi\",\"doi\":\"10.1090/tran/8564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for every $g\\\\geq 2$ there exists a number $c=c(g)>0$ such that the smallest positive eigenvalue of a random closed 3-manifold $M$ of Heegaard genus $g$ is at most $c(g)/{\\\\rm vol}(M)^2$.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了对于每一个$g\geq 2$存在一个数$c=c(g)>0$,使得Heegaard属$g$的随机闭3流形$M$的最小正特征值不超过$c(g)/{\rm vol}(M)^2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small eigenvalues of random 3-manifolds
We show that for every $g\geq 2$ there exists a number $c=c(g)>0$ such that the smallest positive eigenvalue of a random closed 3-manifold $M$ of Heegaard genus $g$ is at most $c(g)/{\rm vol}(M)^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信