{"title":"随机3流形的小特征值","authors":"U. Hamenstaedt, Gabriele Viaggi","doi":"10.1090/tran/8564","DOIUrl":null,"url":null,"abstract":"We show that for every $g\\geq 2$ there exists a number $c=c(g)>0$ such that the smallest positive eigenvalue of a random closed 3-manifold $M$ of Heegaard genus $g$ is at most $c(g)/{\\rm vol}(M)^2$.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Small eigenvalues of random 3-manifolds\",\"authors\":\"U. Hamenstaedt, Gabriele Viaggi\",\"doi\":\"10.1090/tran/8564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for every $g\\\\geq 2$ there exists a number $c=c(g)>0$ such that the smallest positive eigenvalue of a random closed 3-manifold $M$ of Heegaard genus $g$ is at most $c(g)/{\\\\rm vol}(M)^2$.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that for every $g\geq 2$ there exists a number $c=c(g)>0$ such that the smallest positive eigenvalue of a random closed 3-manifold $M$ of Heegaard genus $g$ is at most $c(g)/{\rm vol}(M)^2$.