{"title":"Eagle Ford页岩气吞吐过程:采收率机理研究与优化","authors":"Leizheng Wang, Wei Yu","doi":"10.2118/195185-MS","DOIUrl":null,"url":null,"abstract":"\n US unconventional resource production has developed tremendously in the past decade. Currently, the unconventional operators are trying many strategies such as refracturing, infill drillings and well spacing optimization to improve recovery factor of primary production. They are also employing big data and machine learning to explore the existed production data and geology information to screen the sweet spot from geology point of view. However, current recovery factor of most unconventional reservoirs is still very low (4~10%). A quick production rate decline pushes US operator to pursue gas EOR for unconventional reservoirs, lifting the ultimate recovery factor to another higher level. The goal of this work is to improve oil recovery by implementing gas Huff and Puff process and optimizing injection pattern for one of the US major tight oil reservoirs - Eagle Ford basin. Gas diffusion is regarded as critical for gas Huff and Puff process of tight oil reservoirs. Utilizing the dual permeability model, gas diffusion effect is systematically analyzed and compared with the widely used single porosity model to justify its importance. Transport in natural fractures is proved to be dominated recovery mechanism using dual permeability model. Uncertainty studies about reservoir heterogeneity and nature fracture permeability are performed to understand their influences on well productivity and gas EOR effectiveness. Moreover, three alternative gas injectant compositions including rich gas, lean gas and nitrogen are investigated in gas Huff and Puff processes for Eagle Ford tight oil fractured reservoir. The brief economic evaluation of Huff and Puff project is conducted for black oil region of the Eagle Ford basin.","PeriodicalId":11150,"journal":{"name":"Day 2 Wed, April 10, 2019","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Gas Huff and Puff Process in Eagle Ford Shale: Recovery Mechanism Study and Optimization\",\"authors\":\"Leizheng Wang, Wei Yu\",\"doi\":\"10.2118/195185-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n US unconventional resource production has developed tremendously in the past decade. Currently, the unconventional operators are trying many strategies such as refracturing, infill drillings and well spacing optimization to improve recovery factor of primary production. They are also employing big data and machine learning to explore the existed production data and geology information to screen the sweet spot from geology point of view. However, current recovery factor of most unconventional reservoirs is still very low (4~10%). A quick production rate decline pushes US operator to pursue gas EOR for unconventional reservoirs, lifting the ultimate recovery factor to another higher level. The goal of this work is to improve oil recovery by implementing gas Huff and Puff process and optimizing injection pattern for one of the US major tight oil reservoirs - Eagle Ford basin. Gas diffusion is regarded as critical for gas Huff and Puff process of tight oil reservoirs. Utilizing the dual permeability model, gas diffusion effect is systematically analyzed and compared with the widely used single porosity model to justify its importance. Transport in natural fractures is proved to be dominated recovery mechanism using dual permeability model. Uncertainty studies about reservoir heterogeneity and nature fracture permeability are performed to understand their influences on well productivity and gas EOR effectiveness. Moreover, three alternative gas injectant compositions including rich gas, lean gas and nitrogen are investigated in gas Huff and Puff processes for Eagle Ford tight oil fractured reservoir. The brief economic evaluation of Huff and Puff project is conducted for black oil region of the Eagle Ford basin.\",\"PeriodicalId\":11150,\"journal\":{\"name\":\"Day 2 Wed, April 10, 2019\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, April 10, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/195185-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, April 10, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195185-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gas Huff and Puff Process in Eagle Ford Shale: Recovery Mechanism Study and Optimization
US unconventional resource production has developed tremendously in the past decade. Currently, the unconventional operators are trying many strategies such as refracturing, infill drillings and well spacing optimization to improve recovery factor of primary production. They are also employing big data and machine learning to explore the existed production data and geology information to screen the sweet spot from geology point of view. However, current recovery factor of most unconventional reservoirs is still very low (4~10%). A quick production rate decline pushes US operator to pursue gas EOR for unconventional reservoirs, lifting the ultimate recovery factor to another higher level. The goal of this work is to improve oil recovery by implementing gas Huff and Puff process and optimizing injection pattern for one of the US major tight oil reservoirs - Eagle Ford basin. Gas diffusion is regarded as critical for gas Huff and Puff process of tight oil reservoirs. Utilizing the dual permeability model, gas diffusion effect is systematically analyzed and compared with the widely used single porosity model to justify its importance. Transport in natural fractures is proved to be dominated recovery mechanism using dual permeability model. Uncertainty studies about reservoir heterogeneity and nature fracture permeability are performed to understand their influences on well productivity and gas EOR effectiveness. Moreover, three alternative gas injectant compositions including rich gas, lean gas and nitrogen are investigated in gas Huff and Puff processes for Eagle Ford tight oil fractured reservoir. The brief economic evaluation of Huff and Puff project is conducted for black oil region of the Eagle Ford basin.