{"title":"集中荷载作用下RC梁弯矩重分布计算的新解析方法","authors":"Mohamed A. Farouk, Khaled F. Khalil","doi":"10.1080/13287982.2021.1912518","DOIUrl":null,"url":null,"abstract":"ABSTRACT Computing the moments in RC structures after the yield by linear elastic analysis can lead to an inaccurate assessment of the behaviour due to the nonlinear behaviour. Therefore, it can become necessary to use more advanced methodologies to achieve a higher degree of performance optimisation of structures than those resulting from the simplified approaches adopted by existing design codes based on linear elastic analysis with redistribution of internal forces. The moment redistribution is supposed to start after occurring the cracks of concrete, but with small ratio. In this study, the moment redistribution before the yielding will be neglected, and the redistribution is focused after the yield. This paper suggests a mathematical model to investigate the moment redistribution in RC beams after yielding analytically. In the suggested mathematical model, the beam after forming the plastic hinges is converted into a virtual beam that can be analysed by structural linear analysis. The plastic hinges in the virtual beam will be represented as rotational springs having a linear rotational stiffness against the induced moment. The actual moments can be found through derived relationships in the mathematical model between it and the virtual moment. The mathematical model was verified and it gave values of moment matching experimental results. Also, a comparison for degree of moment redistribution among the suggested mathematical model and several design codes was performed. The analytical results indicate that the proposed mathematical model can be used for analysis of moment redistribution of RC beams.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New analytical method for computing moment redistribution in RC beams under concentrated load\",\"authors\":\"Mohamed A. Farouk, Khaled F. Khalil\",\"doi\":\"10.1080/13287982.2021.1912518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Computing the moments in RC structures after the yield by linear elastic analysis can lead to an inaccurate assessment of the behaviour due to the nonlinear behaviour. Therefore, it can become necessary to use more advanced methodologies to achieve a higher degree of performance optimisation of structures than those resulting from the simplified approaches adopted by existing design codes based on linear elastic analysis with redistribution of internal forces. The moment redistribution is supposed to start after occurring the cracks of concrete, but with small ratio. In this study, the moment redistribution before the yielding will be neglected, and the redistribution is focused after the yield. This paper suggests a mathematical model to investigate the moment redistribution in RC beams after yielding analytically. In the suggested mathematical model, the beam after forming the plastic hinges is converted into a virtual beam that can be analysed by structural linear analysis. The plastic hinges in the virtual beam will be represented as rotational springs having a linear rotational stiffness against the induced moment. The actual moments can be found through derived relationships in the mathematical model between it and the virtual moment. The mathematical model was verified and it gave values of moment matching experimental results. Also, a comparison for degree of moment redistribution among the suggested mathematical model and several design codes was performed. The analytical results indicate that the proposed mathematical model can be used for analysis of moment redistribution of RC beams.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2021.1912518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2021.1912518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
New analytical method for computing moment redistribution in RC beams under concentrated load
ABSTRACT Computing the moments in RC structures after the yield by linear elastic analysis can lead to an inaccurate assessment of the behaviour due to the nonlinear behaviour. Therefore, it can become necessary to use more advanced methodologies to achieve a higher degree of performance optimisation of structures than those resulting from the simplified approaches adopted by existing design codes based on linear elastic analysis with redistribution of internal forces. The moment redistribution is supposed to start after occurring the cracks of concrete, but with small ratio. In this study, the moment redistribution before the yielding will be neglected, and the redistribution is focused after the yield. This paper suggests a mathematical model to investigate the moment redistribution in RC beams after yielding analytically. In the suggested mathematical model, the beam after forming the plastic hinges is converted into a virtual beam that can be analysed by structural linear analysis. The plastic hinges in the virtual beam will be represented as rotational springs having a linear rotational stiffness against the induced moment. The actual moments can be found through derived relationships in the mathematical model between it and the virtual moment. The mathematical model was verified and it gave values of moment matching experimental results. Also, a comparison for degree of moment redistribution among the suggested mathematical model and several design codes was performed. The analytical results indicate that the proposed mathematical model can be used for analysis of moment redistribution of RC beams.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.