拉格朗日系统的李代数sl(2,R)和Noether点对称

Q4 Mathematics
R. Campoamor-Stursberg
{"title":"拉格朗日系统的李代数sl(2,R)和Noether点对称","authors":"R. Campoamor-Stursberg","doi":"10.7546/GIQ-20-2019-99-114","DOIUrl":null,"url":null,"abstract":"Some aspects of the simple Lie algebra sl(2,R) realized as a subalgebra of Noether point symmetries of Lagrangian systems and related inverse problems are discussed, specially in connection to Lagrangians of kinetic type and some geometric properties like sectional curvatures. MSC : 70F17, 70H03, 70H33","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Lie Algebra sl(2,R) and Noether Point Symmetries of Lagrangian Systems\",\"authors\":\"R. Campoamor-Stursberg\",\"doi\":\"10.7546/GIQ-20-2019-99-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some aspects of the simple Lie algebra sl(2,R) realized as a subalgebra of Noether point symmetries of Lagrangian systems and related inverse problems are discussed, specially in connection to Lagrangians of kinetic type and some geometric properties like sectional curvatures. MSC : 70F17, 70H03, 70H33\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-20-2019-99-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-20-2019-99-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

讨论了作为拉格朗日系统Noether点对称子代数的简单李代数sl(2,R)及其反问题的一些方面,特别是与动力学型拉格朗日量和截面曲率等几何性质有关的问题。MSC: 70f17, 70h03, 70h33
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Lie Algebra sl(2,R) and Noether Point Symmetries of Lagrangian Systems
Some aspects of the simple Lie algebra sl(2,R) realized as a subalgebra of Noether point symmetries of Lagrangian systems and related inverse problems are discussed, specially in connection to Lagrangians of kinetic type and some geometric properties like sectional curvatures. MSC : 70F17, 70H03, 70H33
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信