{"title":"拉格朗日系统的李代数sl(2,R)和Noether点对称","authors":"R. Campoamor-Stursberg","doi":"10.7546/GIQ-20-2019-99-114","DOIUrl":null,"url":null,"abstract":"Some aspects of the simple Lie algebra sl(2,R) realized as a subalgebra of Noether point symmetries of Lagrangian systems and related inverse problems are discussed, specially in connection to Lagrangians of kinetic type and some geometric properties like sectional curvatures. MSC : 70F17, 70H03, 70H33","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Lie Algebra sl(2,R) and Noether Point Symmetries of Lagrangian Systems\",\"authors\":\"R. Campoamor-Stursberg\",\"doi\":\"10.7546/GIQ-20-2019-99-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some aspects of the simple Lie algebra sl(2,R) realized as a subalgebra of Noether point symmetries of Lagrangian systems and related inverse problems are discussed, specially in connection to Lagrangians of kinetic type and some geometric properties like sectional curvatures. MSC : 70F17, 70H03, 70H33\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-20-2019-99-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-20-2019-99-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
The Lie Algebra sl(2,R) and Noether Point Symmetries of Lagrangian Systems
Some aspects of the simple Lie algebra sl(2,R) realized as a subalgebra of Noether point symmetries of Lagrangian systems and related inverse problems are discussed, specially in connection to Lagrangians of kinetic type and some geometric properties like sectional curvatures. MSC : 70F17, 70H03, 70H33