多参数简单复合体中子复合体计数和贝蒂数的大偏差

Pub Date : 2022-02-16 DOI:10.1002/rsa.21146
G. Samorodnitsky, Takashi Owada
{"title":"多参数简单复合体中子复合体计数和贝蒂数的大偏差","authors":"G. Samorodnitsky, Takashi Owada","doi":"10.1002/rsa.21146","DOIUrl":null,"url":null,"abstract":"We consider the multiparameter random simplicial complex as a higher dimensional extension of the classical Erdős–Rényi graph. We investigate appearance of “unusual” topological structures in the complex from the point of view of large deviations. We first study upper tail large deviation probabilities for subcomplex counts, deriving the order of magnitude of such probabilities at the logarithmic scale precision. The obtained results are then applied to analyze large deviations for the number of simplices of the multiparameter simplicial complexes. Finally, these results are also used to deduce large deviation estimates for Betti numbers of the complex in the critical dimension.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Large deviations for subcomplex counts and Betti numbers in multiparameter simplicial complexes\",\"authors\":\"G. Samorodnitsky, Takashi Owada\",\"doi\":\"10.1002/rsa.21146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the multiparameter random simplicial complex as a higher dimensional extension of the classical Erdős–Rényi graph. We investigate appearance of “unusual” topological structures in the complex from the point of view of large deviations. We first study upper tail large deviation probabilities for subcomplex counts, deriving the order of magnitude of such probabilities at the logarithmic scale precision. The obtained results are then applied to analyze large deviations for the number of simplices of the multiparameter simplicial complexes. Finally, these results are also used to deduce large deviation estimates for Betti numbers of the complex in the critical dimension.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们把多参数随机简单复形看作是经典Erdős-Rényi图的高维扩展。我们从大偏差的角度研究了复合体中“不寻常”拓扑结构的外观。我们首先研究了次复计数的上尾大偏差概率,在对数尺度精度下推导了这种概率的数量级。然后将所得结果应用于多参数简形复合体的简形数的大偏差分析。最后,这些结果也被用来推导出复合物在关键维度上的大偏差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Large deviations for subcomplex counts and Betti numbers in multiparameter simplicial complexes
We consider the multiparameter random simplicial complex as a higher dimensional extension of the classical Erdős–Rényi graph. We investigate appearance of “unusual” topological structures in the complex from the point of view of large deviations. We first study upper tail large deviation probabilities for subcomplex counts, deriving the order of magnitude of such probabilities at the logarithmic scale precision. The obtained results are then applied to analyze large deviations for the number of simplices of the multiparameter simplicial complexes. Finally, these results are also used to deduce large deviation estimates for Betti numbers of the complex in the critical dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信