扭曲双层石墨烯的无序性

Justin H. Wilson, Yixing Fu, S. Sarma, J. Pixley
{"title":"扭曲双层石墨烯的无序性","authors":"Justin H. Wilson, Yixing Fu, S. Sarma, J. Pixley","doi":"10.1103/PHYSREVRESEARCH.2.023325","DOIUrl":null,"url":null,"abstract":"We develop a theory for a qualitatively new type of disorder in condensed matter systems arising from local twist-angle fluctuations in two strongly coupled van der Waals monolayers twisted with respect to each other to create a flat band moire superlattice. The new paradigm of 'twist angle disorder' arises from the currently ongoing intense research activity in the physics of twisted bilayer graphene. In experimental samples of pristine twisted bilayer graphene, which are nominally free of impurities and defects, the main source of disorder is believed to arise from the unavoidable and uncontrollable non-uniformity of the twist angle across the sample. To address this new physics of twist-angle disorder, we develop a real-space, microscopic model of twisted bilayer graphene where the angle enters as a free parameter. In particular, we focus on the size of single-particle energy gaps separating the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the energy gaps and minibandwidth are strongly affected by disorder while the renormalized velocity remains virtually unchanged. We discuss the implications of our results for the ongoing experiments on twisted bilayer graphene. Our theory is readily generalized to future studies of twist angle disorder effects on all electronic properties of moire superlattices created by twisting two coupled van der Waals materials with respect to each other.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Disorder in twisted bilayer graphene\",\"authors\":\"Justin H. Wilson, Yixing Fu, S. Sarma, J. Pixley\",\"doi\":\"10.1103/PHYSREVRESEARCH.2.023325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a theory for a qualitatively new type of disorder in condensed matter systems arising from local twist-angle fluctuations in two strongly coupled van der Waals monolayers twisted with respect to each other to create a flat band moire superlattice. The new paradigm of 'twist angle disorder' arises from the currently ongoing intense research activity in the physics of twisted bilayer graphene. In experimental samples of pristine twisted bilayer graphene, which are nominally free of impurities and defects, the main source of disorder is believed to arise from the unavoidable and uncontrollable non-uniformity of the twist angle across the sample. To address this new physics of twist-angle disorder, we develop a real-space, microscopic model of twisted bilayer graphene where the angle enters as a free parameter. In particular, we focus on the size of single-particle energy gaps separating the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the energy gaps and minibandwidth are strongly affected by disorder while the renormalized velocity remains virtually unchanged. We discuss the implications of our results for the ongoing experiments on twisted bilayer graphene. Our theory is readily generalized to future studies of twist angle disorder effects on all electronic properties of moire superlattices created by twisting two coupled van der Waals materials with respect to each other.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.2.023325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.023325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们为凝聚态系统中一种定性的新型无序发展了一种理论,这种无序是由两个强耦合范德华单层的局部扭角波动引起的,它们相互扭曲,形成一个平坦的带云纹超晶格。“扭角无序”的新范式源于目前在扭曲双层石墨烯物理学方面的激烈研究活动。在原始扭曲双层石墨烯的实验样品中,名义上没有杂质和缺陷,无序的主要来源被认为是由于样品上扭曲角度的不可避免和不可控的不均匀性。为了解决这种新的扭角无序物理,我们开发了一个真实空间的微观扭曲双层石墨烯模型,其中角度作为自由参数进入。特别地,我们关注了分离小波段和其他光谱的单粒子能量间隙的大小,Van Hove峰,电荷中性附近的重整化狄拉克锥速度,以及小带宽。我们发现能量间隙和小带宽受到无序的强烈影响,而重整化速度几乎保持不变。我们讨论了我们的结果对正在进行的扭曲双层石墨烯实验的影响。我们的理论很容易推广到未来的研究中,扭转角无序对两个耦合范德华材料相互扭转产生的云纹超晶格的所有电子性质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disorder in twisted bilayer graphene
We develop a theory for a qualitatively new type of disorder in condensed matter systems arising from local twist-angle fluctuations in two strongly coupled van der Waals monolayers twisted with respect to each other to create a flat band moire superlattice. The new paradigm of 'twist angle disorder' arises from the currently ongoing intense research activity in the physics of twisted bilayer graphene. In experimental samples of pristine twisted bilayer graphene, which are nominally free of impurities and defects, the main source of disorder is believed to arise from the unavoidable and uncontrollable non-uniformity of the twist angle across the sample. To address this new physics of twist-angle disorder, we develop a real-space, microscopic model of twisted bilayer graphene where the angle enters as a free parameter. In particular, we focus on the size of single-particle energy gaps separating the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the energy gaps and minibandwidth are strongly affected by disorder while the renormalized velocity remains virtually unchanged. We discuss the implications of our results for the ongoing experiments on twisted bilayer graphene. Our theory is readily generalized to future studies of twist angle disorder effects on all electronic properties of moire superlattices created by twisting two coupled van der Waals materials with respect to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信