使用活微生物的代谢物产品作为制备纳米银的还原剂的迷人方法

Mohammad Abdul Rahmman Al-Maeni, Shaymaa Fouad Rasheed
{"title":"使用活微生物的代谢物产品作为制备纳米银的还原剂的迷人方法","authors":"Mohammad Abdul Rahmman Al-Maeni, Shaymaa Fouad Rasheed","doi":"10.18231/2320-1924.2018.0017","DOIUrl":null,"url":null,"abstract":"A crucial area of research in nanotechnology is the formation of environmentally benign nanoparticles. Both unicellular and multicellular play an important role in synthesis nanoparticles through the production of inorganic materials either intracellularly or extracellularly. The agents (pigments, siderophores, cell extracted metabolites and reducing compounds) were used to prepare silver nanparticles with different sizes and shapes. The color variations (dark yellow, slightly dark yellow and golden yellow) arising from changes in the composition, size, and shape of nanoparticles, surrounding medium can be monitored using UV-visible spectrophotometer. These effects are due to the phenomena called surface plasmon resonance. The silver nanoparticles have Plasmon resonances ranged between (390, 383 and 365) nm which they are among the limitation of silver nanoparticles (360 – 420 nm). AFM analysis of Ag NP’s showed partially purified big triangular Ag NP having edge length around ~1. mm. Hexagonal particles on the background of a matrix made up of some molecules which may be metabolites products are found. Small spherical nanoparticles embedded in some kind of matrix indicate that this molecule acts as capping agent, which inhibits further growth of nanoparticles. Also ribbons like structures of width around 50 nm which are intertwined are the noble and rare structures which are synthesized by this method. MIC of silver Nanoparticles for. E coli, ranges between 80-90 µg/ml.., Serrtia, ranges between 50-60 µg/ml and Shagilla, ranges between 90-100 µg/ml. \n \nKeywords: Metabolites product of microorganisms, silver nanoparticles.","PeriodicalId":21014,"journal":{"name":"Research journal of pharmaceutical, biological and chemical sciences","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fascinating approach for using metabolites products of living microorganisms as reducing agents for preparing silver nanoparticles\",\"authors\":\"Mohammad Abdul Rahmman Al-Maeni, Shaymaa Fouad Rasheed\",\"doi\":\"10.18231/2320-1924.2018.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A crucial area of research in nanotechnology is the formation of environmentally benign nanoparticles. Both unicellular and multicellular play an important role in synthesis nanoparticles through the production of inorganic materials either intracellularly or extracellularly. The agents (pigments, siderophores, cell extracted metabolites and reducing compounds) were used to prepare silver nanparticles with different sizes and shapes. The color variations (dark yellow, slightly dark yellow and golden yellow) arising from changes in the composition, size, and shape of nanoparticles, surrounding medium can be monitored using UV-visible spectrophotometer. These effects are due to the phenomena called surface plasmon resonance. The silver nanoparticles have Plasmon resonances ranged between (390, 383 and 365) nm which they are among the limitation of silver nanoparticles (360 – 420 nm). AFM analysis of Ag NP’s showed partially purified big triangular Ag NP having edge length around ~1. mm. Hexagonal particles on the background of a matrix made up of some molecules which may be metabolites products are found. Small spherical nanoparticles embedded in some kind of matrix indicate that this molecule acts as capping agent, which inhibits further growth of nanoparticles. Also ribbons like structures of width around 50 nm which are intertwined are the noble and rare structures which are synthesized by this method. MIC of silver Nanoparticles for. E coli, ranges between 80-90 µg/ml.., Serrtia, ranges between 50-60 µg/ml and Shagilla, ranges between 90-100 µg/ml. \\n \\nKeywords: Metabolites product of microorganisms, silver nanoparticles.\",\"PeriodicalId\":21014,\"journal\":{\"name\":\"Research journal of pharmaceutical, biological and chemical sciences\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research journal of pharmaceutical, biological and chemical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18231/2320-1924.2018.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research journal of pharmaceutical, biological and chemical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18231/2320-1924.2018.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fascinating approach for using metabolites products of living microorganisms as reducing agents for preparing silver nanoparticles
A crucial area of research in nanotechnology is the formation of environmentally benign nanoparticles. Both unicellular and multicellular play an important role in synthesis nanoparticles through the production of inorganic materials either intracellularly or extracellularly. The agents (pigments, siderophores, cell extracted metabolites and reducing compounds) were used to prepare silver nanparticles with different sizes and shapes. The color variations (dark yellow, slightly dark yellow and golden yellow) arising from changes in the composition, size, and shape of nanoparticles, surrounding medium can be monitored using UV-visible spectrophotometer. These effects are due to the phenomena called surface plasmon resonance. The silver nanoparticles have Plasmon resonances ranged between (390, 383 and 365) nm which they are among the limitation of silver nanoparticles (360 – 420 nm). AFM analysis of Ag NP’s showed partially purified big triangular Ag NP having edge length around ~1. mm. Hexagonal particles on the background of a matrix made up of some molecules which may be metabolites products are found. Small spherical nanoparticles embedded in some kind of matrix indicate that this molecule acts as capping agent, which inhibits further growth of nanoparticles. Also ribbons like structures of width around 50 nm which are intertwined are the noble and rare structures which are synthesized by this method. MIC of silver Nanoparticles for. E coli, ranges between 80-90 µg/ml.., Serrtia, ranges between 50-60 µg/ml and Shagilla, ranges between 90-100 µg/ml. Keywords: Metabolites product of microorganisms, silver nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信