一种实时手部姿态估计的协同滤波方法

Chiho Choi, Ayan Sinha, J. H. Choi, Sujin Jang, K. Ramani
{"title":"一种实时手部姿态估计的协同滤波方法","authors":"Chiho Choi, Ayan Sinha, J. H. Choi, Sujin Jang, K. Ramani","doi":"10.1109/ICCV.2015.269","DOIUrl":null,"url":null,"abstract":"Collaborative filtering aims to predict unknown user ratings in a recommender system by collectively assessing known user preferences. In this paper, we first draw analogies between collaborative filtering and the pose estimation problem. Specifically, we recast the hand pose estimation problem as the cold-start problem for a new user with unknown item ratings in a recommender system. Inspired by fast and accurate matrix factorization techniques for collaborative filtering, we develop a real-time algorithm for estimating the hand pose from RGB-D data of a commercial depth camera. First, we efficiently identify nearest neighbors using local shape descriptors in the RGB-D domain from a library of hand poses with known pose parameter values. We then use this information to evaluate the unknown pose parameters using a joint matrix factorization and completion (JMFC) approach. Our quantitative and qualitative results suggest that our approach is robust to variation in hand configurations while achieving real time performance (≈ 29 FPS) on a standard computer.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"9 1","pages":"2336-2344"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"A Collaborative Filtering Approach to Real-Time Hand Pose Estimation\",\"authors\":\"Chiho Choi, Ayan Sinha, J. H. Choi, Sujin Jang, K. Ramani\",\"doi\":\"10.1109/ICCV.2015.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering aims to predict unknown user ratings in a recommender system by collectively assessing known user preferences. In this paper, we first draw analogies between collaborative filtering and the pose estimation problem. Specifically, we recast the hand pose estimation problem as the cold-start problem for a new user with unknown item ratings in a recommender system. Inspired by fast and accurate matrix factorization techniques for collaborative filtering, we develop a real-time algorithm for estimating the hand pose from RGB-D data of a commercial depth camera. First, we efficiently identify nearest neighbors using local shape descriptors in the RGB-D domain from a library of hand poses with known pose parameter values. We then use this information to evaluate the unknown pose parameters using a joint matrix factorization and completion (JMFC) approach. Our quantitative and qualitative results suggest that our approach is robust to variation in hand configurations while achieving real time performance (≈ 29 FPS) on a standard computer.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"9 1\",\"pages\":\"2336-2344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

协同过滤旨在通过集体评估已知用户偏好来预测推荐系统中未知用户的评分。在本文中,我们首先在协同滤波和姿态估计问题之间进行类比。具体而言,我们将手姿估计问题重新定义为推荐系统中具有未知物品评级的新用户的冷启动问题。受快速准确的协同滤波矩阵分解技术的启发,我们开发了一种基于商用深度相机RGB-D数据的手部姿态实时估计算法。首先,我们使用RGB-D域中的局部形状描述符从已知姿态参数值的手部姿态库中有效地识别出最近邻。然后,我们使用这些信息使用联合矩阵分解和补全(JMFC)方法来评估未知的姿态参数。我们的定量和定性结果表明,我们的方法对手部配置的变化具有鲁棒性,同时在标准计算机上实现实时性能(≈29 FPS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Collaborative Filtering Approach to Real-Time Hand Pose Estimation
Collaborative filtering aims to predict unknown user ratings in a recommender system by collectively assessing known user preferences. In this paper, we first draw analogies between collaborative filtering and the pose estimation problem. Specifically, we recast the hand pose estimation problem as the cold-start problem for a new user with unknown item ratings in a recommender system. Inspired by fast and accurate matrix factorization techniques for collaborative filtering, we develop a real-time algorithm for estimating the hand pose from RGB-D data of a commercial depth camera. First, we efficiently identify nearest neighbors using local shape descriptors in the RGB-D domain from a library of hand poses with known pose parameter values. We then use this information to evaluate the unknown pose parameters using a joint matrix factorization and completion (JMFC) approach. Our quantitative and qualitative results suggest that our approach is robust to variation in hand configurations while achieving real time performance (≈ 29 FPS) on a standard computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信