有度界的有序树的生成、排序和取消排序

M. Amani, A. Nowzari-Dalini
{"title":"有度界的有序树的生成、排序和取消排序","authors":"M. Amani, A. Nowzari-Dalini","doi":"10.4204/EPTCS.204.4","DOIUrl":null,"url":null,"abstract":"We study the problem of generating, ranking and unranking of unlabeled ordered trees whose nodes have maximum degree of $\\Delta$. This class of trees represents a generalization of chemical trees. A chemical tree is an unlabeled tree in which no node has degree greater than 4. By allowing up to $\\Delta$ children for each node of chemical tree instead of 4, we will have a generalization of chemical trees. Here, we introduce a new encoding over an alphabet of size 4 for representing unlabeled ordered trees with maximum degree of $\\Delta$. We use this encoding for generating these trees in A-order with constant average time and O(n) worst case time. Due to the given encoding, with a precomputation of size and time O(n^2) (assuming $\\Delta$ is constant), both ranking and unranking algorithms are also designed taking O(n) and O(nlogn) time complexities.","PeriodicalId":88470,"journal":{"name":"Dialogues in cardiovascular medicine : DCM","volume":"230 1","pages":"31-45"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generation, Ranking and Unranking of Ordered Trees with Degree Bounds\",\"authors\":\"M. Amani, A. Nowzari-Dalini\",\"doi\":\"10.4204/EPTCS.204.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of generating, ranking and unranking of unlabeled ordered trees whose nodes have maximum degree of $\\\\Delta$. This class of trees represents a generalization of chemical trees. A chemical tree is an unlabeled tree in which no node has degree greater than 4. By allowing up to $\\\\Delta$ children for each node of chemical tree instead of 4, we will have a generalization of chemical trees. Here, we introduce a new encoding over an alphabet of size 4 for representing unlabeled ordered trees with maximum degree of $\\\\Delta$. We use this encoding for generating these trees in A-order with constant average time and O(n) worst case time. Due to the given encoding, with a precomputation of size and time O(n^2) (assuming $\\\\Delta$ is constant), both ranking and unranking algorithms are also designed taking O(n) and O(nlogn) time complexities.\",\"PeriodicalId\":88470,\"journal\":{\"name\":\"Dialogues in cardiovascular medicine : DCM\",\"volume\":\"230 1\",\"pages\":\"31-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogues in cardiovascular medicine : DCM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.204.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in cardiovascular medicine : DCM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.204.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了节点最大度为$\Delta$的无标记有序树的生成、排序和取消排序问题。这类树代表了化学树的一种概括。化学树是一棵未标记的树,其中没有节点的度数大于4。通过为化学树的每个节点允许最多$\Delta$子节点,而不是4个,我们将有一个化学树的泛化。这里,我们在大小为4的字母表上引入一种新的编码,用于表示最大程度为$\Delta$的未标记有序树。我们使用这种编码以a阶生成这些树,平均时间为常数,最坏情况为O(n)。由于给定的编码,预计算的大小和时间为O(n^2)(假设$\Delta$为常数),排序和不排序算法也被设计为O(n)和O(nlogn)时间复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation, Ranking and Unranking of Ordered Trees with Degree Bounds
We study the problem of generating, ranking and unranking of unlabeled ordered trees whose nodes have maximum degree of $\Delta$. This class of trees represents a generalization of chemical trees. A chemical tree is an unlabeled tree in which no node has degree greater than 4. By allowing up to $\Delta$ children for each node of chemical tree instead of 4, we will have a generalization of chemical trees. Here, we introduce a new encoding over an alphabet of size 4 for representing unlabeled ordered trees with maximum degree of $\Delta$. We use this encoding for generating these trees in A-order with constant average time and O(n) worst case time. Due to the given encoding, with a precomputation of size and time O(n^2) (assuming $\Delta$ is constant), both ranking and unranking algorithms are also designed taking O(n) and O(nlogn) time complexities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信