基于增强自编码器的手-物交互情形手部姿态估计

Shile Li, Haojie Wang, Dongheui Lee
{"title":"基于增强自编码器的手-物交互情形手部姿态估计","authors":"Shile Li, Haojie Wang, Dongheui Lee","doi":"10.1109/ICRA40945.2020.9197299","DOIUrl":null,"url":null,"abstract":"Hand pose estimation with objects is challenging due to object occlusion and the lack of large annotated datasets. To tackle these issues, we propose an Augmented Autoencoder based deep learning method using augmented clean hand data. Our method takes 3D point cloud of a hand with an augmented object as input and encodes the input to latent representation of the hand. From the latent representation, our method decodes 3D hand pose and we propose to use an auxiliary point cloud decoder to assist the formation of the latent space. Through quantitative and qualitative evaluation on both synthetic dataset and real captured data containing objects, we demonstrate state-of-the-art performance for hand pose estimation with objects, even using only a small number of annotated hand-object samples.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"59 1","pages":"993-999"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hand Pose Estimation for Hand-Object Interaction Cases using Augmented Autoencoder\",\"authors\":\"Shile Li, Haojie Wang, Dongheui Lee\",\"doi\":\"10.1109/ICRA40945.2020.9197299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand pose estimation with objects is challenging due to object occlusion and the lack of large annotated datasets. To tackle these issues, we propose an Augmented Autoencoder based deep learning method using augmented clean hand data. Our method takes 3D point cloud of a hand with an augmented object as input and encodes the input to latent representation of the hand. From the latent representation, our method decodes 3D hand pose and we propose to use an auxiliary point cloud decoder to assist the formation of the latent space. Through quantitative and qualitative evaluation on both synthetic dataset and real captured data containing objects, we demonstrate state-of-the-art performance for hand pose estimation with objects, even using only a small number of annotated hand-object samples.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"59 1\",\"pages\":\"993-999\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于物体遮挡和缺乏大型注释数据集,手部姿态估计具有挑战性。为了解决这些问题,我们提出了一种基于增强自动编码器的深度学习方法,使用增强的干净手数据。我们的方法将手的三维点云与增强物体作为输入,并将输入编码为手的潜在表示。基于潜在表示,我们的方法对三维手姿进行解码,并建议使用辅助点云解码器来辅助潜在空间的形成。通过对合成数据集和包含对象的真实捕获数据进行定量和定性评估,我们展示了使用对象进行手部姿态估计的最先进性能,即使仅使用少量注释的手部对象样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Pose Estimation for Hand-Object Interaction Cases using Augmented Autoencoder
Hand pose estimation with objects is challenging due to object occlusion and the lack of large annotated datasets. To tackle these issues, we propose an Augmented Autoencoder based deep learning method using augmented clean hand data. Our method takes 3D point cloud of a hand with an augmented object as input and encodes the input to latent representation of the hand. From the latent representation, our method decodes 3D hand pose and we propose to use an auxiliary point cloud decoder to assist the formation of the latent space. Through quantitative and qualitative evaluation on both synthetic dataset and real captured data containing objects, we demonstrate state-of-the-art performance for hand pose estimation with objects, even using only a small number of annotated hand-object samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信