{"title":"基于三种粒子群算法的STATCOM多目标无功潮流优化","authors":"N. Mancer, B. Mahdad, K. Srairi","doi":"10.5923/J.IJEE.20120202.01","DOIUrl":null,"url":null,"abstract":"This paper proposes, an efficient variant of particle swarm optimization (PSO) to solve the multi-objective optimal reactive power flow (ORPF) based flexible AC transmission system (FACTS) using multi STATCOM Controllers by adjusting dynamically their parameters setting. Two objectives function are considered (power loss and voltage devia- tion) to validate the robustness of the proposed approach. The performance of the proposed variant based PSO approach has been tested on the standard test system IEEE 30-bus; simulation results compared to the standard PSO confirm the effectiveness of the proposed variant to solving the multi-objective reactive power considering multi STATCOM Control- lers.","PeriodicalId":14041,"journal":{"name":"International journal of energy engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Multi Objective Optimal Reactive Power Flow Based STATCOM Using Three Variant of PSO\",\"authors\":\"N. Mancer, B. Mahdad, K. Srairi\",\"doi\":\"10.5923/J.IJEE.20120202.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes, an efficient variant of particle swarm optimization (PSO) to solve the multi-objective optimal reactive power flow (ORPF) based flexible AC transmission system (FACTS) using multi STATCOM Controllers by adjusting dynamically their parameters setting. Two objectives function are considered (power loss and voltage devia- tion) to validate the robustness of the proposed approach. The performance of the proposed variant based PSO approach has been tested on the standard test system IEEE 30-bus; simulation results compared to the standard PSO confirm the effectiveness of the proposed variant to solving the multi-objective reactive power considering multi STATCOM Control- lers.\",\"PeriodicalId\":14041,\"journal\":{\"name\":\"International journal of energy engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of energy engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.IJEE.20120202.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of energy engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.IJEE.20120202.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi Objective Optimal Reactive Power Flow Based STATCOM Using Three Variant of PSO
This paper proposes, an efficient variant of particle swarm optimization (PSO) to solve the multi-objective optimal reactive power flow (ORPF) based flexible AC transmission system (FACTS) using multi STATCOM Controllers by adjusting dynamically their parameters setting. Two objectives function are considered (power loss and voltage devia- tion) to validate the robustness of the proposed approach. The performance of the proposed variant based PSO approach has been tested on the standard test system IEEE 30-bus; simulation results compared to the standard PSO confirm the effectiveness of the proposed variant to solving the multi-objective reactive power considering multi STATCOM Control- lers.