{"title":"非发散形式抛物方程的奇异解","authors":"L. Silvestre","doi":"10.2422/2036-2145.202011_110","DOIUrl":null,"url":null,"abstract":"For any $\\alpha \\in (0,1)$, we construct an example of a solution to a parabolic equation with measurable coefficients in two space dimensions which has an isolated singularity and is not better that $C^\\alpha$. We prove that there exists no solution to a fully nonlinear uniformly parabolic equation, in any dimension, which has an isolated singularity where it is not $C^2$ while it is analytic elsewhere, and it is homogeneous in $x$ at the time of the singularity. We build an example of a non homogeneous solution to a fully nonlinear uniformly parabolic equation with an isolated singularity, which we verify with the aid of a numerical computation.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Singular solutions to parabolic equations in nondivergence form\",\"authors\":\"L. Silvestre\",\"doi\":\"10.2422/2036-2145.202011_110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any $\\\\alpha \\\\in (0,1)$, we construct an example of a solution to a parabolic equation with measurable coefficients in two space dimensions which has an isolated singularity and is not better that $C^\\\\alpha$. We prove that there exists no solution to a fully nonlinear uniformly parabolic equation, in any dimension, which has an isolated singularity where it is not $C^2$ while it is analytic elsewhere, and it is homogeneous in $x$ at the time of the singularity. We build an example of a non homogeneous solution to a fully nonlinear uniformly parabolic equation with an isolated singularity, which we verify with the aid of a numerical computation.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202011_110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202011_110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Singular solutions to parabolic equations in nondivergence form
For any $\alpha \in (0,1)$, we construct an example of a solution to a parabolic equation with measurable coefficients in two space dimensions which has an isolated singularity and is not better that $C^\alpha$. We prove that there exists no solution to a fully nonlinear uniformly parabolic equation, in any dimension, which has an isolated singularity where it is not $C^2$ while it is analytic elsewhere, and it is homogeneous in $x$ at the time of the singularity. We build an example of a non homogeneous solution to a fully nonlinear uniformly parabolic equation with an isolated singularity, which we verify with the aid of a numerical computation.