海报:超大规模高性能计算系统的内存意识集体I/O

Yin Lu, Yong Chen, R. Thakur, Zhuang Yu
{"title":"海报:超大规模高性能计算系统的内存意识集体I/O","authors":"Yin Lu, Yong Chen, R. Thakur, Zhuang Yu","doi":"10.1145/2491661.2481430","DOIUrl":null,"url":null,"abstract":"The continuing decrease in memory capacity per core and the increasing disparity between core count and off-chip memory bandwidth create significant challenges for I/O operations in exascale systems. The exascale challenges require rethinking collective I/O for the effective exploitation of the correlation among I/O accesses in the exascale system. In this study we introduce a Memory-Conscious Collective I/O considering the constraint of the memory space. 1)Restricts aggregation data traffic within disjointed subgroups 2)Coordinates I/O accesses in intra-node and inter-node layer 3)Determines I/O aggregators at run time considering data distribution and memory consumption among processes.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"27 1","pages":"1362-1362"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems\",\"authors\":\"Yin Lu, Yong Chen, R. Thakur, Zhuang Yu\",\"doi\":\"10.1145/2491661.2481430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuing decrease in memory capacity per core and the increasing disparity between core count and off-chip memory bandwidth create significant challenges for I/O operations in exascale systems. The exascale challenges require rethinking collective I/O for the effective exploitation of the correlation among I/O accesses in the exascale system. In this study we introduce a Memory-Conscious Collective I/O considering the constraint of the memory space. 1)Restricts aggregation data traffic within disjointed subgroups 2)Coordinates I/O accesses in intra-node and inter-node layer 3)Determines I/O aggregators at run time considering data distribution and memory consumption among processes.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"27 1\",\"pages\":\"1362-1362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2491661.2481430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2491661.2481430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

每核内存容量的持续下降以及核数和片外内存带宽之间的差距越来越大,给百亿亿级系统中的I/O操作带来了重大挑战。百亿亿级的挑战需要重新考虑集体I/O,以便有效地利用百亿亿级系统中I/O访问之间的相关性。在本研究中,我们引入了一种考虑到内存空间约束的内存意识集体I/O。1)在不连接的子组中限制聚合数据流量2)协调节点内和节点间层的I/O访问3)在运行时考虑进程之间的数据分布和内存消耗确定I/O聚合器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems
The continuing decrease in memory capacity per core and the increasing disparity between core count and off-chip memory bandwidth create significant challenges for I/O operations in exascale systems. The exascale challenges require rethinking collective I/O for the effective exploitation of the correlation among I/O accesses in the exascale system. In this study we introduce a Memory-Conscious Collective I/O considering the constraint of the memory space. 1)Restricts aggregation data traffic within disjointed subgroups 2)Coordinates I/O accesses in intra-node and inter-node layer 3)Determines I/O aggregators at run time considering data distribution and memory consumption among processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信