融合测量的多目标跟踪全局最优解

João F. Henriques, Rui Caseiro, Jorge P. Batista
{"title":"融合测量的多目标跟踪全局最优解","authors":"João F. Henriques, Rui Caseiro, Jorge P. Batista","doi":"10.1109/ICCV.2011.6126532","DOIUrl":null,"url":null,"abstract":"Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Globally optimal solution to multi-object tracking with merged measurements\",\"authors\":\"João F. Henriques, Rui Caseiro, Jorge P. Batista\",\"doi\":\"10.1109/ICCV.2011.6126532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145

摘要

近年来,多目标跟踪已被表述为一个全局优化问题,并通过匈牙利算法等优化方法得到了有效的求解。一个严重的限制是无法对合并为单个度量的多个对象进行建模,并在保持最优性的同时将它们作为一个组进行跟踪。这项工作提出了一种新的图结构,将这些多匹配事件编码为标准的一对一匹配,允许在多项式时间内计算解决方案。由于对象合并时会丢失身份,因此提出了一种有效的识别组的方法,作为流循环问题。然后将跨组跟踪单个对象的问题作为标准的最优分配。实验表明,与最先进的算法相比,PETS 2006和2009数据集的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Globally optimal solution to multi-object tracking with merged measurements
Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信