{"title":"融合测量的多目标跟踪全局最优解","authors":"João F. Henriques, Rui Caseiro, Jorge P. Batista","doi":"10.1109/ICCV.2011.6126532","DOIUrl":null,"url":null,"abstract":"Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Globally optimal solution to multi-object tracking with merged measurements\",\"authors\":\"João F. Henriques, Rui Caseiro, Jorge P. Batista\",\"doi\":\"10.1109/ICCV.2011.6126532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Globally optimal solution to multi-object tracking with merged measurements
Multiple object tracking has been formulated recently as a global optimization problem, and solved efficiently with optimal methods such as the Hungarian Algorithm. A severe limitation is the inability to model multiple objects that are merged into a single measurement, and track them as a group, while retaining optimality. This work presents a new graph structure that encodes these multiple-match events as standard one-to-one matches, allowing computation of the solution in polynomial time. Since identities are lost when objects merge, an efficient method to identify groups is also presented, as a flow circulation problem. The problem of tracking individual objects across groups is then posed as a standard optimal assignment. Experiments show increased performance on the PETS 2006 and 2009 datasets compared to state-of-the-art algorithms.