关于无理子空间的一些性质

Vasiliy Neckrasov
{"title":"关于无理子空间的一些性质","authors":"Vasiliy Neckrasov","doi":"10.2478/udt-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we discuss some properties of completely irrational subspaces. We prove that there exist completely irrational subspaces that are badly approximable and, moreover, sets of such subspaces are winning in different senses. We get some bounds for Diophantine exponents of vectors that lie in badly approximable subspaces that are completely irrational; in particular, for any vector ξ from two-dimensional badly approximable completely irrational subspace of ℝd one has ω⌢(ξ)≤5-12 \\mathord{\\buildrel{\\lower3pt\\hbox{$\\scriptscriptstyle\\frown$}}\\over \\omega } \\left( \\xi \\right) \\le {{\\sqrt {5 - 1} } \\over 2} . Besides that, some statements about the dimension of subspaces generated by best approximations to completely irrational subspace easily follow from properties that we discuss.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"58 1","pages":"89 - 104"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Some Properties of Irrational Subspaces\",\"authors\":\"Vasiliy Neckrasov\",\"doi\":\"10.2478/udt-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we discuss some properties of completely irrational subspaces. We prove that there exist completely irrational subspaces that are badly approximable and, moreover, sets of such subspaces are winning in different senses. We get some bounds for Diophantine exponents of vectors that lie in badly approximable subspaces that are completely irrational; in particular, for any vector ξ from two-dimensional badly approximable completely irrational subspace of ℝd one has ω⌢(ξ)≤5-12 \\\\mathord{\\\\buildrel{\\\\lower3pt\\\\hbox{$\\\\scriptscriptstyle\\\\frown$}}\\\\over \\\\omega } \\\\left( \\\\xi \\\\right) \\\\le {{\\\\sqrt {5 - 1} } \\\\over 2} . Besides that, some statements about the dimension of subspaces generated by best approximations to completely irrational subspace easily follow from properties that we discuss.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"58 1\",\"pages\":\"89 - 104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2022-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2022-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文讨论了完全无理子空间的一些性质。我们证明了存在完全不合理的坏近似子空间,并且这些子空间的集合在不同意义上是胜利的。我们得到了向量的丢番图指数的一些界这些向量在非常近似的子空间中是完全无理数的;特别地,对于任何来自二维极不近似的完全无理性子空间的向量ξ, ω (ξ)≤5-12 \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \omega }\left (\xi\right) \le{{\sqrt 5-1{}}\over 2}。此外,根据我们所讨论的性质,可以很容易地得出由完全无理子空间的最佳逼近所产生的子空间维数的一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Properties of Irrational Subspaces
Abstract In this paper, we discuss some properties of completely irrational subspaces. We prove that there exist completely irrational subspaces that are badly approximable and, moreover, sets of such subspaces are winning in different senses. We get some bounds for Diophantine exponents of vectors that lie in badly approximable subspaces that are completely irrational; in particular, for any vector ξ from two-dimensional badly approximable completely irrational subspace of ℝd one has ω⌢(ξ)≤5-12 \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \omega } \left( \xi \right) \le {{\sqrt {5 - 1} } \over 2} . Besides that, some statements about the dimension of subspaces generated by best approximations to completely irrational subspace easily follow from properties that we discuss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信