使用mdefnet的实时印度TSR

Banhi Sanyal, Anshuman Padhy, R. Mohapatra, Ratnakar Dash
{"title":"使用mdefnet的实时印度TSR","authors":"Banhi Sanyal, Anshuman Padhy, R. Mohapatra, Ratnakar Dash","doi":"10.1109/AISP53593.2022.9760570","DOIUrl":null,"url":null,"abstract":"Traffic sign recognition (TSR) is an important aspect of Intelligent transport systems (ITS). The lack of architectures that are flexible across multiple datasets are rarely there. As such this work attempts to use an efficient Deep neural network (DNN) architecture and implement it on an Indian traffic sign dataset IRSDBv1.0. IRSDBv1.0 is the first publicly available Indian datset, to the best our knowledge. The performance of MDEffNet is studied and analyzed.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"26 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Indian TSR using MDEffNet\",\"authors\":\"Banhi Sanyal, Anshuman Padhy, R. Mohapatra, Ratnakar Dash\",\"doi\":\"10.1109/AISP53593.2022.9760570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic sign recognition (TSR) is an important aspect of Intelligent transport systems (ITS). The lack of architectures that are flexible across multiple datasets are rarely there. As such this work attempts to use an efficient Deep neural network (DNN) architecture and implement it on an Indian traffic sign dataset IRSDBv1.0. IRSDBv1.0 is the first publicly available Indian datset, to the best our knowledge. The performance of MDEffNet is studied and analyzed.\",\"PeriodicalId\":6793,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"26 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP53593.2022.9760570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通标志识别(TSR)是智能交通系统的一个重要方面。很少有架构能够灵活地跨多个数据集。因此,这项工作试图使用高效的深度神经网络(DNN)架构,并在印度交通标志数据集IRSDBv1.0上实现它。据我们所知,IRSDBv1.0是第一个公开可用的印度数据集。对MDEffNet的性能进行了研究和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Indian TSR using MDEffNet
Traffic sign recognition (TSR) is an important aspect of Intelligent transport systems (ITS). The lack of architectures that are flexible across multiple datasets are rarely there. As such this work attempts to use an efficient Deep neural network (DNN) architecture and implement it on an Indian traffic sign dataset IRSDBv1.0. IRSDBv1.0 is the first publicly available Indian datset, to the best our knowledge. The performance of MDEffNet is studied and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信