{"title":"IndShaker:一种基于知识的方法来增强多视角系统动力学分析","authors":"S. F. Pileggi","doi":"10.3390/modelling4010002","DOIUrl":null,"url":null,"abstract":"Decision making as a result of system dynamics analysis requires, in practice, a straightforward and systematic modeling capability as well as a high-level of customization and flexibility to adapt to situations and environments that may vary very much from each other. While in general terms a completely generic approach could be not as effective as ad hoc solutions, the proper application of modern technology may facilitate agile strategies as a result of a smart combination of qualitative and quantitative aspects. In order to address such complexity, we propose a knowledge-based approach that integrates the systematic computation of heterogeneous criteria with open semantics. The holistic understanding of the framework is described by a reference architecture and the proof-of-concept prototype developed can support high-level system analysis, as well as being suitable within a number of applications contexts—i.e., as a research/educational tool, communication framework, gamification and participatory modeling. Additionally, the knowledge-based philosophy, developed upon Semantic Web technology, increases the capability in terms of holistic knowledge building and re-use via interoperability. Last but not least, the framework is designed to constantly evolve in the next future, for instance by incorporating more advanced AI-powered features.","PeriodicalId":89310,"journal":{"name":"WIT transactions on modelling and simulation","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IndShaker: A Knowledge-Based Approach to Enhance Multi-Perspective System Dynamics Analysis\",\"authors\":\"S. F. Pileggi\",\"doi\":\"10.3390/modelling4010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision making as a result of system dynamics analysis requires, in practice, a straightforward and systematic modeling capability as well as a high-level of customization and flexibility to adapt to situations and environments that may vary very much from each other. While in general terms a completely generic approach could be not as effective as ad hoc solutions, the proper application of modern technology may facilitate agile strategies as a result of a smart combination of qualitative and quantitative aspects. In order to address such complexity, we propose a knowledge-based approach that integrates the systematic computation of heterogeneous criteria with open semantics. The holistic understanding of the framework is described by a reference architecture and the proof-of-concept prototype developed can support high-level system analysis, as well as being suitable within a number of applications contexts—i.e., as a research/educational tool, communication framework, gamification and participatory modeling. Additionally, the knowledge-based philosophy, developed upon Semantic Web technology, increases the capability in terms of holistic knowledge building and re-use via interoperability. Last but not least, the framework is designed to constantly evolve in the next future, for instance by incorporating more advanced AI-powered features.\",\"PeriodicalId\":89310,\"journal\":{\"name\":\"WIT transactions on modelling and simulation\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIT transactions on modelling and simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/modelling4010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT transactions on modelling and simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/modelling4010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IndShaker: A Knowledge-Based Approach to Enhance Multi-Perspective System Dynamics Analysis
Decision making as a result of system dynamics analysis requires, in practice, a straightforward and systematic modeling capability as well as a high-level of customization and flexibility to adapt to situations and environments that may vary very much from each other. While in general terms a completely generic approach could be not as effective as ad hoc solutions, the proper application of modern technology may facilitate agile strategies as a result of a smart combination of qualitative and quantitative aspects. In order to address such complexity, we propose a knowledge-based approach that integrates the systematic computation of heterogeneous criteria with open semantics. The holistic understanding of the framework is described by a reference architecture and the proof-of-concept prototype developed can support high-level system analysis, as well as being suitable within a number of applications contexts—i.e., as a research/educational tool, communication framework, gamification and participatory modeling. Additionally, the knowledge-based philosophy, developed upon Semantic Web technology, increases the capability in terms of holistic knowledge building and re-use via interoperability. Last but not least, the framework is designed to constantly evolve in the next future, for instance by incorporating more advanced AI-powered features.