L. Manivel, M. Michałek, Leonid Monin, Tim Seynnaeve, Martin Vodivcka
{"title":"完全二次:舒伯特演算高斯模型和半定规划","authors":"L. Manivel, M. Michałek, Leonid Monin, Tim Seynnaeve, Martin Vodivcka","doi":"10.4171/jems/1330","DOIUrl":null,"url":null,"abstract":"We establish connections between: the maximum likelihood degree (ML-degree) for linear concentration models, the algebraic degree of semidefinite programming (SDP), and Schubert calculus for complete quadrics. We prove a conjecture by Sturmfels and Uhler on the polynomiality of the ML-degree. We also prove a conjecture by Nie, Ranestad and Sturmfels providing an explicit formula for the degree of SDP. The interactions between the three fields shed new light on the asymptotic behaviour of enumerative invariants for the variety of complete quadrics. We also extend these results to spaces of general matrices and of skew-symmetric matrices.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Complete quadrics: Schubert calculus for Gaussian models and semidefinite programming\",\"authors\":\"L. Manivel, M. Michałek, Leonid Monin, Tim Seynnaeve, Martin Vodivcka\",\"doi\":\"10.4171/jems/1330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish connections between: the maximum likelihood degree (ML-degree) for linear concentration models, the algebraic degree of semidefinite programming (SDP), and Schubert calculus for complete quadrics. We prove a conjecture by Sturmfels and Uhler on the polynomiality of the ML-degree. We also prove a conjecture by Nie, Ranestad and Sturmfels providing an explicit formula for the degree of SDP. The interactions between the three fields shed new light on the asymptotic behaviour of enumerative invariants for the variety of complete quadrics. We also extend these results to spaces of general matrices and of skew-symmetric matrices.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Complete quadrics: Schubert calculus for Gaussian models and semidefinite programming
We establish connections between: the maximum likelihood degree (ML-degree) for linear concentration models, the algebraic degree of semidefinite programming (SDP), and Schubert calculus for complete quadrics. We prove a conjecture by Sturmfels and Uhler on the polynomiality of the ML-degree. We also prove a conjecture by Nie, Ranestad and Sturmfels providing an explicit formula for the degree of SDP. The interactions between the three fields shed new light on the asymptotic behaviour of enumerative invariants for the variety of complete quadrics. We also extend these results to spaces of general matrices and of skew-symmetric matrices.