优化bdd用于时间序列数据集操作

S. Stergiou, J. Jain
{"title":"优化bdd用于时间序列数据集操作","authors":"S. Stergiou, J. Jain","doi":"10.7873/DATE.2013.212","DOIUrl":null,"url":null,"abstract":"In this work we advocate the adoption of Binary Decision Diagrams (BDDs) for storing and manipulating Time-Series datasets. We first propose a generic BDD transformation which identifies and removes 50% of all BDD edges without any loss of information. Following, we optimize the core operation for adding samples to a dataset and characterize its complexity. We identify time-range queries as one of the core operations executed on time-series datasets, and describe explicit Boolean function constructions that aid in efficiently executing them directly on BDDs. We exhibit significant space and performance gains when applying our algorithms on synthetic and real-life biosensor time-series datasets collected from field trials.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"17 1","pages":"1018-1021"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing BDDs for Time-Series dataset manipulation\",\"authors\":\"S. Stergiou, J. Jain\",\"doi\":\"10.7873/DATE.2013.212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we advocate the adoption of Binary Decision Diagrams (BDDs) for storing and manipulating Time-Series datasets. We first propose a generic BDD transformation which identifies and removes 50% of all BDD edges without any loss of information. Following, we optimize the core operation for adding samples to a dataset and characterize its complexity. We identify time-range queries as one of the core operations executed on time-series datasets, and describe explicit Boolean function constructions that aid in efficiently executing them directly on BDDs. We exhibit significant space and performance gains when applying our algorithms on synthetic and real-life biosensor time-series datasets collected from field trials.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"17 1\",\"pages\":\"1018-1021\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提倡采用二进制决策图(bdd)来存储和操作时间序列数据集。我们首先提出了一种通用的BDD转换,它可以在不丢失任何信息的情况下识别和删除所有BDD边缘的50%。接下来,我们优化了向数据集添加样本的核心操作,并描述了其复杂性。我们将时间范围查询确定为在时间序列数据集上执行的核心操作之一,并描述了明确的布尔函数结构,以帮助在bdd上有效地直接执行它们。当将我们的算法应用于从现场试验中收集的合成和真实生物传感器时间序列数据集时,我们展示了显着的空间和性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing BDDs for Time-Series dataset manipulation
In this work we advocate the adoption of Binary Decision Diagrams (BDDs) for storing and manipulating Time-Series datasets. We first propose a generic BDD transformation which identifies and removes 50% of all BDD edges without any loss of information. Following, we optimize the core operation for adding samples to a dataset and characterize its complexity. We identify time-range queries as one of the core operations executed on time-series datasets, and describe explicit Boolean function constructions that aid in efficiently executing them directly on BDDs. We exhibit significant space and performance gains when applying our algorithms on synthetic and real-life biosensor time-series datasets collected from field trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信