基于人工神经网络的手动图特征提取与实时识别

Artemiy Oleinikov, B. Abibullaev, A. Shintemirov, M. Folgheraiter
{"title":"基于人工神经网络的手动图特征提取与实时识别","authors":"Artemiy Oleinikov, B. Abibullaev, A. Shintemirov, M. Folgheraiter","doi":"10.1109/IWW-BCI.2018.8311527","DOIUrl":null,"url":null,"abstract":"Electromyography (EMG) signal analysis is one of the key determinants of the effectiveness of prosthetic devices. Modern researchers provide various methods of detection of different hand movements and postures. In this work, we examined the possibility to produce efficient detection of hand movement to a specific posture with the minimum possible number of electrodes. The data acquisition is produced with 1 channel BiTalino EMG sensor based on bipolar differential measurement. Using feature extraction and artificial neural network we achieved 82% of offline classification accuracy for 8 hand motions and 91% accuracy for 6 hand motions based on 200 ms of EMG signal. Also, the motion detection algorithm was developed and successfully tested that allowed to implement the algorithm for real-time classification and that showed sufficient accuracy for 2 and 4 motion classes cases.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"229 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Feature extraction and real-time recognition of hand motion intentions from EMGs via artificial neural networks\",\"authors\":\"Artemiy Oleinikov, B. Abibullaev, A. Shintemirov, M. Folgheraiter\",\"doi\":\"10.1109/IWW-BCI.2018.8311527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromyography (EMG) signal analysis is one of the key determinants of the effectiveness of prosthetic devices. Modern researchers provide various methods of detection of different hand movements and postures. In this work, we examined the possibility to produce efficient detection of hand movement to a specific posture with the minimum possible number of electrodes. The data acquisition is produced with 1 channel BiTalino EMG sensor based on bipolar differential measurement. Using feature extraction and artificial neural network we achieved 82% of offline classification accuracy for 8 hand motions and 91% accuracy for 6 hand motions based on 200 ms of EMG signal. Also, the motion detection algorithm was developed and successfully tested that allowed to implement the algorithm for real-time classification and that showed sufficient accuracy for 2 and 4 motion classes cases.\",\"PeriodicalId\":6537,\"journal\":{\"name\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"volume\":\"229 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2018.8311527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

肌电图(EMG)信号分析是假肢装置有效性的关键决定因素之一。现代研究人员提供了各种方法来检测不同的手部运动和姿势。在这项工作中,我们研究了用尽可能少的电极对特定姿势的手部运动进行有效检测的可能性。数据采集采用基于双极差分测量的1通道BiTalino肌电传感器。利用特征提取和人工神经网络对200 ms的肌电信号进行8个手部动作的离线分类准确率达到82%,6个手部动作的离线分类准确率达到91%。此外,开发并成功测试了运动检测算法,使算法能够实现实时分类,并且在2和4个运动类别的情况下显示出足够的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction and real-time recognition of hand motion intentions from EMGs via artificial neural networks
Electromyography (EMG) signal analysis is one of the key determinants of the effectiveness of prosthetic devices. Modern researchers provide various methods of detection of different hand movements and postures. In this work, we examined the possibility to produce efficient detection of hand movement to a specific posture with the minimum possible number of electrodes. The data acquisition is produced with 1 channel BiTalino EMG sensor based on bipolar differential measurement. Using feature extraction and artificial neural network we achieved 82% of offline classification accuracy for 8 hand motions and 91% accuracy for 6 hand motions based on 200 ms of EMG signal. Also, the motion detection algorithm was developed and successfully tested that allowed to implement the algorithm for real-time classification and that showed sufficient accuracy for 2 and 4 motion classes cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信