{"title":"具有横向线性连接的叶的自同构群","authors":"N. I. Zhukova, A. Y. Dolgonosova","doi":"10.2478/s11533-013-0307-8","DOIUrl":null,"url":null,"abstract":"The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"56 1","pages":"2076-2088"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The automorphism groups of foliations with transverse linear connection\",\"authors\":\"N. I. Zhukova, A. Y. Dolgonosova\",\"doi\":\"10.2478/s11533-013-0307-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"2076-2088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0307-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0307-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The automorphism groups of foliations with transverse linear connection
The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.