{"title":"加热和冷却循环对带状形状记忆合金元件形状记忆和力学特性的影响","authors":"Chikara Nakagawa, Hiroki Cho","doi":"10.14723/TMRSJ.43.19","DOIUrl":null,"url":null,"abstract":"A pulley-type SMA heat-engine using Ti-Ni shape memory alloy (SMA) driven by lowtemperature waste heat energy was investigated. We have proposed and fabricated a pulley-type heat-engine using tape-shaped SMA element for the purpose of improving of the life span of pulley-type SMA heat-engine. However, shape memory and mechanical characteristics of SMA deteriorate with increasing number of thermal cycles. Therefore, effects of thermal cycling on the shape memory and mechanical characteristics of the tape-shaped SMA element are investigated in this study. The chemical composition of the specimen is Ti-45.0Ni-5.0Cu (at%), heat treatment condition is 673K for 3.6ks and the specimen is memorized horizontal shape. The number of thermal cycling (N) is varied from 0 to 105. Transformation temperatures are almost constant as the N increases to 1×103. However, each difference of transformation temperature (Ms-Mf and AsAf) decrease when the N is within a range of 5×103 to 1×104, above which it increases. Mechanical properties improve with increase of N when the N is up to 1×104, above which it deteriorates. Furthermore, 2-stage martensitic transformation appears when N is above 5×104. These tendencies are caused by the variation of dislocation density and residual martensitic phase with the increasing of N.","PeriodicalId":23220,"journal":{"name":"Transactions-Materials Research Society of Japan","volume":"50 12 1","pages":"19-22"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Heating and Cooling Cycle on the Shape Memory and Mechanical Characteristics of Tape-shaped Shape Memory Alloy Element\",\"authors\":\"Chikara Nakagawa, Hiroki Cho\",\"doi\":\"10.14723/TMRSJ.43.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pulley-type SMA heat-engine using Ti-Ni shape memory alloy (SMA) driven by lowtemperature waste heat energy was investigated. We have proposed and fabricated a pulley-type heat-engine using tape-shaped SMA element for the purpose of improving of the life span of pulley-type SMA heat-engine. However, shape memory and mechanical characteristics of SMA deteriorate with increasing number of thermal cycles. Therefore, effects of thermal cycling on the shape memory and mechanical characteristics of the tape-shaped SMA element are investigated in this study. The chemical composition of the specimen is Ti-45.0Ni-5.0Cu (at%), heat treatment condition is 673K for 3.6ks and the specimen is memorized horizontal shape. The number of thermal cycling (N) is varied from 0 to 105. Transformation temperatures are almost constant as the N increases to 1×103. However, each difference of transformation temperature (Ms-Mf and AsAf) decrease when the N is within a range of 5×103 to 1×104, above which it increases. Mechanical properties improve with increase of N when the N is up to 1×104, above which it deteriorates. Furthermore, 2-stage martensitic transformation appears when N is above 5×104. These tendencies are caused by the variation of dislocation density and residual martensitic phase with the increasing of N.\",\"PeriodicalId\":23220,\"journal\":{\"name\":\"Transactions-Materials Research Society of Japan\",\"volume\":\"50 12 1\",\"pages\":\"19-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions-Materials Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14723/TMRSJ.43.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions-Materials Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14723/TMRSJ.43.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Heating and Cooling Cycle on the Shape Memory and Mechanical Characteristics of Tape-shaped Shape Memory Alloy Element
A pulley-type SMA heat-engine using Ti-Ni shape memory alloy (SMA) driven by lowtemperature waste heat energy was investigated. We have proposed and fabricated a pulley-type heat-engine using tape-shaped SMA element for the purpose of improving of the life span of pulley-type SMA heat-engine. However, shape memory and mechanical characteristics of SMA deteriorate with increasing number of thermal cycles. Therefore, effects of thermal cycling on the shape memory and mechanical characteristics of the tape-shaped SMA element are investigated in this study. The chemical composition of the specimen is Ti-45.0Ni-5.0Cu (at%), heat treatment condition is 673K for 3.6ks and the specimen is memorized horizontal shape. The number of thermal cycling (N) is varied from 0 to 105. Transformation temperatures are almost constant as the N increases to 1×103. However, each difference of transformation temperature (Ms-Mf and AsAf) decrease when the N is within a range of 5×103 to 1×104, above which it increases. Mechanical properties improve with increase of N when the N is up to 1×104, above which it deteriorates. Furthermore, 2-stage martensitic transformation appears when N is above 5×104. These tendencies are caused by the variation of dislocation density and residual martensitic phase with the increasing of N.