关于低阶组合装配的最大零件尺寸

Pub Date : 2022-12-30 DOI:10.1002/rsa.21132
R. Arratia, S. Desalvo
{"title":"关于低阶组合装配的最大零件尺寸","authors":"R. Arratia, S. Desalvo","doi":"10.1002/rsa.21132","DOIUrl":null,"url":null,"abstract":"We give a general framework for approximations to decomposable combinatorial structures suitable to the situation where the size n$$ n $$ and the number of components k$$ k $$ are specified. In particular for assemblies, this involves a Poisson process, which, with the appropriate choice of parameter, may be viewed as an extension of saddlepoint approximation. We illustrate the use of the Poisson process description for assemblies by analyzing the component structure when the rank, defined as r:=n−k$$ r:= n-k $$ , is small relative to the size n$$ n $$ . There is near‐universal behavior, in the sense that, apart from degenerate cases where the exponential generating function has radius of convergence zero, we have for t∈(0,∞)$$ t\\in \\left(0,\\infty \\right) $$ and ℓ=1,2,…$$ \\ell =1,2,\\dots $$ : when r≍nα$$ r\\asymp {n}^{\\alpha } $$ for fixed α∈(ℓℓ+1,ℓ+1ℓ+2)$$ \\alpha \\in \\left(\\frac{\\ell }{\\ell +1},\\frac{\\ell +1}{\\ell +2}\\right) $$ , the size L1$$ {L}_1 $$ of the largest component converges in probability to ℓ+2$$ \\ell +2 $$ ; when r∼tnℓ/(ℓ+1)$$ r\\sim t\\kern0.3em {n}^{\\ell /\\left(\\ell +1\\right)} $$ , we have ℙ(L1∈{ℓ+1,ℓ+2})→1$$ \\mathbb{P}\\left({L}_1\\in \\left\\{\\ell +1,\\ell +2\\right\\}\\right)\\to 1 $$ , with the choice governed by a Poisson limit distribution for the number of components of size ℓ+2$$ \\ell +2 $$ . This was recently observed, for the case ℓ=1$$ \\ell =1 $$ and the special cases of permutations and set partitions, using Chen–Stein approximations for the indicators of attacks and alignments in rook placements.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the largest part size of low‐rank combinatorial assemblies\",\"authors\":\"R. Arratia, S. Desalvo\",\"doi\":\"10.1002/rsa.21132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a general framework for approximations to decomposable combinatorial structures suitable to the situation where the size n$$ n $$ and the number of components k$$ k $$ are specified. In particular for assemblies, this involves a Poisson process, which, with the appropriate choice of parameter, may be viewed as an extension of saddlepoint approximation. We illustrate the use of the Poisson process description for assemblies by analyzing the component structure when the rank, defined as r:=n−k$$ r:= n-k $$ , is small relative to the size n$$ n $$ . There is near‐universal behavior, in the sense that, apart from degenerate cases where the exponential generating function has radius of convergence zero, we have for t∈(0,∞)$$ t\\\\in \\\\left(0,\\\\infty \\\\right) $$ and ℓ=1,2,…$$ \\\\ell =1,2,\\\\dots $$ : when r≍nα$$ r\\\\asymp {n}^{\\\\alpha } $$ for fixed α∈(ℓℓ+1,ℓ+1ℓ+2)$$ \\\\alpha \\\\in \\\\left(\\\\frac{\\\\ell }{\\\\ell +1},\\\\frac{\\\\ell +1}{\\\\ell +2}\\\\right) $$ , the size L1$$ {L}_1 $$ of the largest component converges in probability to ℓ+2$$ \\\\ell +2 $$ ; when r∼tnℓ/(ℓ+1)$$ r\\\\sim t\\\\kern0.3em {n}^{\\\\ell /\\\\left(\\\\ell +1\\\\right)} $$ , we have ℙ(L1∈{ℓ+1,ℓ+2})→1$$ \\\\mathbb{P}\\\\left({L}_1\\\\in \\\\left\\\\{\\\\ell +1,\\\\ell +2\\\\right\\\\}\\\\right)\\\\to 1 $$ , with the choice governed by a Poisson limit distribution for the number of components of size ℓ+2$$ \\\\ell +2 $$ . This was recently observed, for the case ℓ=1$$ \\\\ell =1 $$ and the special cases of permutations and set partitions, using Chen–Stein approximations for the indicators of attacks and alignments in rook placements.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了可分解组合结构近似的一般框架,适用于大小n $$ n $$和组件个数k $$ k $$指定的情况。特别是对于装配体,这涉及到泊松过程,在适当选择参数的情况下,泊松过程可以看作是鞍点近似的扩展。当秩(定义为r:=n−k $$ r:= n-k $$)相对于尺寸n $$ n $$较小时,我们通过分析组件结构来说明泊松过程描述对组件的使用。除了指数生成函数收敛半径为零的退化情况外,对于t∈(0,∞)$$ t\in \left(0,\infty \right) $$和r =1,2,…$$ \ell =1,2,\dots $$:当r≤α α $$ r\asymp {n}^{\alpha } $$对于固定的α∈(lz +1, lz +1, lz +2) $$ \alpha \in \left(\frac{\ell }{\ell +1},\frac{\ell +1}{\ell +2}\right) $$,最大分量的大小L1 $$ {L}_1 $$在概率上收敛于lz +2 $$ \ell +2 $$;当r ~ tn n r /(r +1) $$ r\sim t\kern0.3em {n}^{\ell /\left(\ell +1\right)} $$时,我们有(L1∈r {+1, r +2})→1 $$ \mathbb{P}\left({L}_1\in \left\{\ell +1,\ell +2\right\}\right)\to 1 $$,其选择由大小为r +2的分量个数的泊松极限分布支配$$ \ell +2 $$。这是最近观察到的,对于情况下,1 $$ \ell =1 $$和置换和集合分区的特殊情况,使用Chen-Stein近似的攻击和对齐的指标在车的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the largest part size of low‐rank combinatorial assemblies
We give a general framework for approximations to decomposable combinatorial structures suitable to the situation where the size n$$ n $$ and the number of components k$$ k $$ are specified. In particular for assemblies, this involves a Poisson process, which, with the appropriate choice of parameter, may be viewed as an extension of saddlepoint approximation. We illustrate the use of the Poisson process description for assemblies by analyzing the component structure when the rank, defined as r:=n−k$$ r:= n-k $$ , is small relative to the size n$$ n $$ . There is near‐universal behavior, in the sense that, apart from degenerate cases where the exponential generating function has radius of convergence zero, we have for t∈(0,∞)$$ t\in \left(0,\infty \right) $$ and ℓ=1,2,…$$ \ell =1,2,\dots $$ : when r≍nα$$ r\asymp {n}^{\alpha } $$ for fixed α∈(ℓℓ+1,ℓ+1ℓ+2)$$ \alpha \in \left(\frac{\ell }{\ell +1},\frac{\ell +1}{\ell +2}\right) $$ , the size L1$$ {L}_1 $$ of the largest component converges in probability to ℓ+2$$ \ell +2 $$ ; when r∼tnℓ/(ℓ+1)$$ r\sim t\kern0.3em {n}^{\ell /\left(\ell +1\right)} $$ , we have ℙ(L1∈{ℓ+1,ℓ+2})→1$$ \mathbb{P}\left({L}_1\in \left\{\ell +1,\ell +2\right\}\right)\to 1 $$ , with the choice governed by a Poisson limit distribution for the number of components of size ℓ+2$$ \ell +2 $$ . This was recently observed, for the case ℓ=1$$ \ell =1 $$ and the special cases of permutations and set partitions, using Chen–Stein approximations for the indicators of attacks and alignments in rook placements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信