紧半单量子群作为高阶图代数的晶体极限

IF 1.2 1区 数学 Q1 MATHEMATICS
Marco Matassa, Robert Yuncken
{"title":"紧半单量子群作为高阶图代数的晶体极限","authors":"Marco Matassa, Robert Yuncken","doi":"10.1515/crelle-2023-0047","DOIUrl":null,"url":null,"abstract":"Abstract Let O q ⁢ [ K ] \\mathcal{O}_{q}[K] be the quantized coordinate ring over the field C ⁢ ( q ) \\mathbb{C}(q) of rational functions corresponding to a compact semisimple Lie group 𝐾, equipped with its ∗-structure. Let A 0 ⊂ C ⁢ ( q ) {\\mathbf{A}_{0}}\\subset\\mathbb{C}(q) denote the subring of regular functions at q = 0 q=0 . We introduce an A 0 \\mathbf{A}_{0} -subalgebra O q A 0 ⁢ [ K ] ⊂ O q ⁢ [ K ] \\mathcal{O}_{q}^{{\\mathbf{A}_{0}}}[K]\\subset\\mathcal{O}_{q}[K] which is stable with respect to the ∗-structure and which has the following properties with respect to the crystal limit q → 0 q\\to 0 . The specialization of O q ⁢ [ K ] \\mathcal{O}_{q}[K] at each q ∈ ( 0 , ∞ ) ∖ { 1 } q\\in(0,\\infty)\\setminus\\{1\\} admits a faithful ∗-representation π q \\pi_{q} on a fixed Hilbert space, a result due to Soibelman. We show that, for every element a ∈ O q A 0 ⁢ [ K ] a\\in\\mathcal{O}_{q}^{{\\mathbf{A}_{0}}}[K] , the family of operators π q ⁢ ( a ) \\pi_{q}(a) admits a norm limit as q → 0 q\\to 0 . These limits define a ∗-representation π 0 \\pi_{0} of O q A 0 ⁢ [ K ] \\mathcal{O}_{q}^{{\\mathbf{A}_{0}}}[K] . We show that the resulting ∗-algebra O ⁢ [ K 0 ] = π 0 ⁢ ( O q A 0 ⁢ [ K ] ) \\mathcal{O}[K_{0}]=\\pi_{0}(\\mathcal{O}_{q}^{{\\mathbf{A}_{0}}}[K]) is a Kumjian–Pask algebra, in the sense of Aranda Pino, Clark, an Huef and Raeburn. We give an explicit description of the underlying higher-rank graph in terms of crystal basis theory. As a consequence, we obtain a continuous field of C * C^{*} -algebras ( C ⁢ ( K q ) ) q ∈ [ 0 , ∞ ] (C(K_{q}))_{q\\in[0,\\infty]} , where the fibres at q = 0 q=0 and ∞ are explicitly defined higher-rank graph algebras.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"360 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Crystal limits of compact semisimple quantum groups as higher-rank graph algebras\",\"authors\":\"Marco Matassa, Robert Yuncken\",\"doi\":\"10.1515/crelle-2023-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let O q ⁢ [ K ] \\\\mathcal{O}_{q}[K] be the quantized coordinate ring over the field C ⁢ ( q ) \\\\mathbb{C}(q) of rational functions corresponding to a compact semisimple Lie group 𝐾, equipped with its ∗-structure. Let A 0 ⊂ C ⁢ ( q ) {\\\\mathbf{A}_{0}}\\\\subset\\\\mathbb{C}(q) denote the subring of regular functions at q = 0 q=0 . We introduce an A 0 \\\\mathbf{A}_{0} -subalgebra O q A 0 ⁢ [ K ] ⊂ O q ⁢ [ K ] \\\\mathcal{O}_{q}^{{\\\\mathbf{A}_{0}}}[K]\\\\subset\\\\mathcal{O}_{q}[K] which is stable with respect to the ∗-structure and which has the following properties with respect to the crystal limit q → 0 q\\\\to 0 . The specialization of O q ⁢ [ K ] \\\\mathcal{O}_{q}[K] at each q ∈ ( 0 , ∞ ) ∖ { 1 } q\\\\in(0,\\\\infty)\\\\setminus\\\\{1\\\\} admits a faithful ∗-representation π q \\\\pi_{q} on a fixed Hilbert space, a result due to Soibelman. We show that, for every element a ∈ O q A 0 ⁢ [ K ] a\\\\in\\\\mathcal{O}_{q}^{{\\\\mathbf{A}_{0}}}[K] , the family of operators π q ⁢ ( a ) \\\\pi_{q}(a) admits a norm limit as q → 0 q\\\\to 0 . These limits define a ∗-representation π 0 \\\\pi_{0} of O q A 0 ⁢ [ K ] \\\\mathcal{O}_{q}^{{\\\\mathbf{A}_{0}}}[K] . We show that the resulting ∗-algebra O ⁢ [ K 0 ] = π 0 ⁢ ( O q A 0 ⁢ [ K ] ) \\\\mathcal{O}[K_{0}]=\\\\pi_{0}(\\\\mathcal{O}_{q}^{{\\\\mathbf{A}_{0}}}[K]) is a Kumjian–Pask algebra, in the sense of Aranda Pino, Clark, an Huef and Raeburn. We give an explicit description of the underlying higher-rank graph in terms of crystal basis theory. As a consequence, we obtain a continuous field of C * C^{*} -algebras ( C ⁢ ( K q ) ) q ∈ [ 0 , ∞ ] (C(K_{q}))_{q\\\\in[0,\\\\infty]} , where the fibres at q = 0 q=0 and ∞ are explicitly defined higher-rank graph algebras.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"360 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0047\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0047","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设O q _ [K] \mathcal{O} _q{[K]是C _ (q) }\mathbb{C} (q)场上对应于紧致半单李群𝐾的有理函数的量子化坐标环,具有其* -结构。设A 0∧C≠(q) {\mathbf{A} _0{}}\subset\mathbb{C} (q)表示正则函数在q=0处的子函数q=0。我们引入一个A 0 \mathbf{A} _0{ -子代数O q A 0≠[K]∧O q≠[K] }\mathcal{O} _q{^ }{{\mathbf{A} _0{[K] }}}\subset\mathcal{O} _q{[K],它相对于* -结构是稳定的,并且相对于晶体极限q→0 q }\to 0具有以下性质。O q≠[K] \mathcal{O} _q[K]在每个q{∈(0,∞)∈}1{ q }\in (0, \infty) \setminus{1}上的专门化使得π q \pi _q{在一个固定的Hilbert空间上有一个可靠的∗-表示,这是由Soibelman得到的结果。我们证明了对于每一个元素a∈O q a 0¹[K] a }\in\mathcal{O} _q{^ }{{\mathbf{A} _0{[K],算子族π q¹(a) }}}\pi _q{(a)有一个范数极限为q→0 q }\to 0。这些极限定义了O q a 0¹[K] \mathcal{O} _q{^ }{{\mathbf{A}}{ _0}{{。在Aranda Pino, Clark, an Huef和Raeburn的意义上,我们证明了所得的∗-代数O¹[K 0] = π 0¹(O }}} _0[K]的一个* -表示π 0 {}\piq¹[K]) \mathcal{O}[K_{0}] = \pi _0{(}\mathcal{O} _q^ {}{{\mathbf{A} _0[K])是一个Kumjian-Pask代数。我们用晶体基理论给出了底层高阶图的显式描述。因此,我们得到了C * C^{*}}} -代数(C¹(K q)) q∈[0,∞](C(K_q)){_q}{}{\in[0,\infty]}的连续域,其中在q=0、q=0和∞处的纤维是显式定义的高阶图代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal limits of compact semisimple quantum groups as higher-rank graph algebras
Abstract Let O q ⁢ [ K ] \mathcal{O}_{q}[K] be the quantized coordinate ring over the field C ⁢ ( q ) \mathbb{C}(q) of rational functions corresponding to a compact semisimple Lie group 𝐾, equipped with its ∗-structure. Let A 0 ⊂ C ⁢ ( q ) {\mathbf{A}_{0}}\subset\mathbb{C}(q) denote the subring of regular functions at q = 0 q=0 . We introduce an A 0 \mathbf{A}_{0} -subalgebra O q A 0 ⁢ [ K ] ⊂ O q ⁢ [ K ] \mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K]\subset\mathcal{O}_{q}[K] which is stable with respect to the ∗-structure and which has the following properties with respect to the crystal limit q → 0 q\to 0 . The specialization of O q ⁢ [ K ] \mathcal{O}_{q}[K] at each q ∈ ( 0 , ∞ ) ∖ { 1 } q\in(0,\infty)\setminus\{1\} admits a faithful ∗-representation π q \pi_{q} on a fixed Hilbert space, a result due to Soibelman. We show that, for every element a ∈ O q A 0 ⁢ [ K ] a\in\mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K] , the family of operators π q ⁢ ( a ) \pi_{q}(a) admits a norm limit as q → 0 q\to 0 . These limits define a ∗-representation π 0 \pi_{0} of O q A 0 ⁢ [ K ] \mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K] . We show that the resulting ∗-algebra O ⁢ [ K 0 ] = π 0 ⁢ ( O q A 0 ⁢ [ K ] ) \mathcal{O}[K_{0}]=\pi_{0}(\mathcal{O}_{q}^{{\mathbf{A}_{0}}}[K]) is a Kumjian–Pask algebra, in the sense of Aranda Pino, Clark, an Huef and Raeburn. We give an explicit description of the underlying higher-rank graph in terms of crystal basis theory. As a consequence, we obtain a continuous field of C * C^{*} -algebras ( C ⁢ ( K q ) ) q ∈ [ 0 , ∞ ] (C(K_{q}))_{q\in[0,\infty]} , where the fibres at q = 0 q=0 and ∞ are explicitly defined higher-rank graph algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信