热、磁化、相对论弗拉索夫麦克斯韦系统经典解的均匀寿命

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Cheverry, S. Ibrahim, Dayton Preissl
{"title":"热、磁化、相对论弗拉索夫麦克斯韦系统经典解的均匀寿命","authors":"C. Cheverry, S. Ibrahim, Dayton Preissl","doi":"10.3934/krm.2021042","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function <inline-formula><tex-math id=\"M1\">\\begin{document}$ f(t,\\cdot) $\\end{document}</tex-math></inline-formula>. Magnetically confined plasmas are characterized by the presence of a strong <i>external</i> magnetic field <inline-formula><tex-math id=\"M2\">\\begin{document}$ x \\mapsto \\epsilon^{-1} \\mathbf{B}_e(x) $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\epsilon $\\end{document}</tex-math></inline-formula> is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent <i>internal</i> electromagnetic fields <inline-formula><tex-math id=\"M4\">\\begin{document}$ (E,B) $\\end{document}</tex-math></inline-formula> are supposed to be small. In the non-magnetized setting, local <inline-formula><tex-math id=\"M5\">\\begin{document}$ C^1 $\\end{document}</tex-math></inline-formula>-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\epsilon^{-1} $\\end{document}</tex-math></inline-formula> is large, standard results predict that the lifetime <inline-formula><tex-math id=\"M7\">\\begin{document}$ T_\\epsilon $\\end{document}</tex-math></inline-formula> of solutions may shrink to zero when <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\epsilon $\\end{document}</tex-math></inline-formula> goes to <inline-formula><tex-math id=\"M9\">\\begin{document}$ 0 $\\end{document}</tex-math></inline-formula>. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound (<inline-formula><tex-math id=\"M10\">\\begin{document}$ 0<T<T_\\epsilon $\\end{document}</tex-math></inline-formula>) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows <inline-formula><tex-math id=\"M11\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> remains at a distance <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\epsilon $\\end{document}</tex-math></inline-formula> from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system\",\"authors\":\"C. Cheverry, S. Ibrahim, Dayton Preissl\",\"doi\":\"10.3934/krm.2021042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ f(t,\\\\cdot) $\\\\end{document}</tex-math></inline-formula>. Magnetically confined plasmas are characterized by the presence of a strong <i>external</i> magnetic field <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ x \\\\mapsto \\\\epsilon^{-1} \\\\mathbf{B}_e(x) $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\epsilon $\\\\end{document}</tex-math></inline-formula> is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent <i>internal</i> electromagnetic fields <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ (E,B) $\\\\end{document}</tex-math></inline-formula> are supposed to be small. In the non-magnetized setting, local <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ C^1 $\\\\end{document}</tex-math></inline-formula>-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\epsilon^{-1} $\\\\end{document}</tex-math></inline-formula> is large, standard results predict that the lifetime <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ T_\\\\epsilon $\\\\end{document}</tex-math></inline-formula> of solutions may shrink to zero when <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ \\\\epsilon $\\\\end{document}</tex-math></inline-formula> goes to <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ 0 $\\\\end{document}</tex-math></inline-formula>. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound (<inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ 0<T<T_\\\\epsilon $\\\\end{document}</tex-math></inline-formula>) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula> remains at a distance <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ \\\\epsilon $\\\\end{document}</tex-math></inline-formula> from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2021042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2021042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了磁约束等离子体在相空间中的动力学描述。它解决了相对论弗拉索夫麦克斯韦系统的近平衡态稳定性问题。我们在密度函数\begin{document}$ f(t,\cdot) $\end{document}的Glassey-Strauss紧支持动量假设下工作。磁约束等离子体的特征是存在一个强的外部磁场\begin{document}$ x \mapsto \epsilon^{-1} \mathbf{B}_e(x) $\end{document},其中\begin{document}$ \epsilon $\end{document}是一个与电子逆回旋频率相关的小参数。相比之下,自洽内部电磁场\begin{document}$ (E,B) $\end{document}应该很小。在非磁化设置下,局部\begin{document}$ C^1 $\end{document}解确实存在,但不排除大数据在有限时间内爆炸的可能性。因此,在强磁化的情况下,由于\begin{document}$ \epsilon^{-1} $\end{document}很大,标准结果预测当\begin{document}$ \epsilon $\end{document}变为\begin{document}$ 0 $\end{document}时,解的生命周期\begin{document}$ T_\epsilon $\end{document}可能会缩小为零。在本文中,通过场矫直和时间平均过程,我们展示了解的生命周期和统一的supo - norm估计的统一下界(\begin{document}$ 0)。此外,一个bootstrap参数显示\begin{document}$ f $\end{document}与线性化系统保持距离\begin{document}$ \epsilon $\end{document},而内部字段对于准备良好的初始数据可以相差1阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system

This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function \begin{document}$ f(t,\cdot) $\end{document}. Magnetically confined plasmas are characterized by the presence of a strong external magnetic field \begin{document}$ x \mapsto \epsilon^{-1} \mathbf{B}_e(x) $\end{document}, where \begin{document}$ \epsilon $\end{document} is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent internal electromagnetic fields \begin{document}$ (E,B) $\end{document} are supposed to be small. In the non-magnetized setting, local \begin{document}$ C^1 $\end{document}-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since \begin{document}$ \epsilon^{-1} $\end{document} is large, standard results predict that the lifetime \begin{document}$ T_\epsilon $\end{document} of solutions may shrink to zero when \begin{document}$ \epsilon $\end{document} goes to \begin{document}$ 0 $\end{document}. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound (\begin{document}$ 0) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows \begin{document}$ f $\end{document} remains at a distance \begin{document}$ \epsilon $\end{document} from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信