{"title":"热、磁化、相对论弗拉索夫麦克斯韦系统经典解的均匀寿命","authors":"C. Cheverry, S. Ibrahim, Dayton Preissl","doi":"10.3934/krm.2021042","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function <inline-formula><tex-math id=\"M1\">\\begin{document}$ f(t,\\cdot) $\\end{document}</tex-math></inline-formula>. Magnetically confined plasmas are characterized by the presence of a strong <i>external</i> magnetic field <inline-formula><tex-math id=\"M2\">\\begin{document}$ x \\mapsto \\epsilon^{-1} \\mathbf{B}_e(x) $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\epsilon $\\end{document}</tex-math></inline-formula> is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent <i>internal</i> electromagnetic fields <inline-formula><tex-math id=\"M4\">\\begin{document}$ (E,B) $\\end{document}</tex-math></inline-formula> are supposed to be small. In the non-magnetized setting, local <inline-formula><tex-math id=\"M5\">\\begin{document}$ C^1 $\\end{document}</tex-math></inline-formula>-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\epsilon^{-1} $\\end{document}</tex-math></inline-formula> is large, standard results predict that the lifetime <inline-formula><tex-math id=\"M7\">\\begin{document}$ T_\\epsilon $\\end{document}</tex-math></inline-formula> of solutions may shrink to zero when <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\epsilon $\\end{document}</tex-math></inline-formula> goes to <inline-formula><tex-math id=\"M9\">\\begin{document}$ 0 $\\end{document}</tex-math></inline-formula>. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound (<inline-formula><tex-math id=\"M10\">\\begin{document}$ 0<T<T_\\epsilon $\\end{document}</tex-math></inline-formula>) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows <inline-formula><tex-math id=\"M11\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> remains at a distance <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\epsilon $\\end{document}</tex-math></inline-formula> from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system\",\"authors\":\"C. Cheverry, S. Ibrahim, Dayton Preissl\",\"doi\":\"10.3934/krm.2021042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ f(t,\\\\cdot) $\\\\end{document}</tex-math></inline-formula>. Magnetically confined plasmas are characterized by the presence of a strong <i>external</i> magnetic field <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ x \\\\mapsto \\\\epsilon^{-1} \\\\mathbf{B}_e(x) $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\epsilon $\\\\end{document}</tex-math></inline-formula> is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent <i>internal</i> electromagnetic fields <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ (E,B) $\\\\end{document}</tex-math></inline-formula> are supposed to be small. In the non-magnetized setting, local <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ C^1 $\\\\end{document}</tex-math></inline-formula>-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\epsilon^{-1} $\\\\end{document}</tex-math></inline-formula> is large, standard results predict that the lifetime <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ T_\\\\epsilon $\\\\end{document}</tex-math></inline-formula> of solutions may shrink to zero when <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ \\\\epsilon $\\\\end{document}</tex-math></inline-formula> goes to <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ 0 $\\\\end{document}</tex-math></inline-formula>. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound (<inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ 0<T<T_\\\\epsilon $\\\\end{document}</tex-math></inline-formula>) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula> remains at a distance <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ \\\\epsilon $\\\\end{document}</tex-math></inline-formula> from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2021042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2021042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system
This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function \begin{document}$ f(t,\cdot) $\end{document}. Magnetically confined plasmas are characterized by the presence of a strong external magnetic field \begin{document}$ x \mapsto \epsilon^{-1} \mathbf{B}_e(x) $\end{document}, where \begin{document}$ \epsilon $\end{document} is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent internal electromagnetic fields \begin{document}$ (E,B) $\end{document} are supposed to be small. In the non-magnetized setting, local \begin{document}$ C^1 $\end{document}-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since \begin{document}$ \epsilon^{-1} $\end{document} is large, standard results predict that the lifetime \begin{document}$ T_\epsilon $\end{document} of solutions may shrink to zero when \begin{document}$ \epsilon $\end{document} goes to \begin{document}$ 0 $\end{document}. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound (\begin{document}$ 0) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows \begin{document}$ f $\end{document} remains at a distance \begin{document}$ \epsilon $\end{document} from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.