基于边界盒的弱监督深度卷积神经网络的不确定性引导和空间约束损失医学图像分割

Golnar K. Mahani, Ruizhe Li, N. Evangelou, Stamatios Sotiropolous, P. Morgan, A. French, Xin Chen
{"title":"基于边界盒的弱监督深度卷积神经网络的不确定性引导和空间约束损失医学图像分割","authors":"Golnar K. Mahani, Ruizhe Li, N. Evangelou, Stamatios Sotiropolous, P. Morgan, A. French, Xin Chen","doi":"10.1109/ISBI52829.2022.9761558","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a weakly supervised deep convolutional neural network for medical image segmentation using an uncertainty guided and spatially constrained loss, which only requires bounding box annotations for model training. We utilise predictive uncertainty estimation during training to guide the model learning from the image region with high predictive confidence. Additionally, a conditional random field (CRF) based local spatial constraint is incorporated to the loss function, which regularises the predicted labels of a local region. This CRF loss term is independent to the training labels (bounding box annotation), which prevents the model over-fitted to the bounding box annotation. We evaluated our method on a public dermoscopic dataset containing different types of skin lesions. Our method achieved superior performance in comparison with the state-of-the-art learning based (DeepCut) and non-learning based (GrabCut) methods in terms of dice coefficient. The code is available on Github (https://github.com/golnarkmahani/Weakly-Supervised-Segmentation).","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bounding Box Based Weakly Supervised Deep Convolutional Neural Network for Medical Image Segmentation Using an Uncertainty Guided and Spatially Constrained Loss\",\"authors\":\"Golnar K. Mahani, Ruizhe Li, N. Evangelou, Stamatios Sotiropolous, P. Morgan, A. French, Xin Chen\",\"doi\":\"10.1109/ISBI52829.2022.9761558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a weakly supervised deep convolutional neural network for medical image segmentation using an uncertainty guided and spatially constrained loss, which only requires bounding box annotations for model training. We utilise predictive uncertainty estimation during training to guide the model learning from the image region with high predictive confidence. Additionally, a conditional random field (CRF) based local spatial constraint is incorporated to the loss function, which regularises the predicted labels of a local region. This CRF loss term is independent to the training labels (bounding box annotation), which prevents the model over-fitted to the bounding box annotation. We evaluated our method on a public dermoscopic dataset containing different types of skin lesions. Our method achieved superior performance in comparison with the state-of-the-art learning based (DeepCut) and non-learning based (GrabCut) methods in terms of dice coefficient. The code is available on Github (https://github.com/golnarkmahani/Weakly-Supervised-Segmentation).\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"2 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种弱监督深度卷积神经网络,用于医学图像分割,使用不确定性引导和空间约束损失,只需要边界框注释进行模型训练。我们在训练过程中利用预测不确定性估计来指导模型从具有高预测置信度的图像区域学习。此外,在损失函数中加入了基于条件随机场(CRF)的局部空间约束,对局部区域的预测标签进行正则化。该CRF损失项与训练标签(边界框标注)无关,避免了模型过度拟合到边界框标注。我们在包含不同类型皮肤病变的公共皮肤镜数据集上评估了我们的方法。在骰子系数方面,与最先进的基于学习的(DeepCut)和非基于学习的(GrabCut)方法相比,我们的方法取得了更好的性能。代码可在Github (https://github.com/golnarkmahani/Weakly-Supervised-Segmentation)上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding Box Based Weakly Supervised Deep Convolutional Neural Network for Medical Image Segmentation Using an Uncertainty Guided and Spatially Constrained Loss
In this paper, we propose a weakly supervised deep convolutional neural network for medical image segmentation using an uncertainty guided and spatially constrained loss, which only requires bounding box annotations for model training. We utilise predictive uncertainty estimation during training to guide the model learning from the image region with high predictive confidence. Additionally, a conditional random field (CRF) based local spatial constraint is incorporated to the loss function, which regularises the predicted labels of a local region. This CRF loss term is independent to the training labels (bounding box annotation), which prevents the model over-fitted to the bounding box annotation. We evaluated our method on a public dermoscopic dataset containing different types of skin lesions. Our method achieved superior performance in comparison with the state-of-the-art learning based (DeepCut) and non-learning based (GrabCut) methods in terms of dice coefficient. The code is available on Github (https://github.com/golnarkmahani/Weakly-Supervised-Segmentation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信