{"title":"分离条件下布洛芬分子手性转变的理论研究","authors":"Zuocheng Wang, Fengliang Liu, Li-ping Wang, Hua Tong, Tianrong Yu, Lily Dong","doi":"10.4208/JAMS.022514.031414A","DOIUrl":null,"url":null,"abstract":"In this article, we do a research on the chiral shift process of the isolated alpha alanine molecule using the basis set of 6-31+g(d,p), which is based on density functional theory B3LYP. Furthermore, the chiral transition path reaction potential en- ergy surface of ibuprofen molecule is drawn by looking for the extreme value point structure including the transition state and intermediate. Finally, the geometry and electronic structure properties of extreme value point are also analyzed. The results show that there are two achieve reaction paths of ibuprofen from S-type to R-type. Path 1 consists of three transition states and two intermediate states. Path 2 includes four transition states and three intermediate states. On the reaction path, the greatest barrier which is from the transfer of hydrogen in chiral carbon to oxygen in carboxyl, is 73.54 Kcal/mol. The researchprovides a theoretical reference to further realize some important application value over the chiral transition reaction control of point chiral molecule.","PeriodicalId":15131,"journal":{"name":"Journal of Atomic and Molecular Sciences","volume":"55 1","pages":"289-300"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The theoretical research on the chiral transition of ibuprofen molecules under isolated conditions\",\"authors\":\"Zuocheng Wang, Fengliang Liu, Li-ping Wang, Hua Tong, Tianrong Yu, Lily Dong\",\"doi\":\"10.4208/JAMS.022514.031414A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we do a research on the chiral shift process of the isolated alpha alanine molecule using the basis set of 6-31+g(d,p), which is based on density functional theory B3LYP. Furthermore, the chiral transition path reaction potential en- ergy surface of ibuprofen molecule is drawn by looking for the extreme value point structure including the transition state and intermediate. Finally, the geometry and electronic structure properties of extreme value point are also analyzed. The results show that there are two achieve reaction paths of ibuprofen from S-type to R-type. Path 1 consists of three transition states and two intermediate states. Path 2 includes four transition states and three intermediate states. On the reaction path, the greatest barrier which is from the transfer of hydrogen in chiral carbon to oxygen in carboxyl, is 73.54 Kcal/mol. The researchprovides a theoretical reference to further realize some important application value over the chiral transition reaction control of point chiral molecule.\",\"PeriodicalId\":15131,\"journal\":{\"name\":\"Journal of Atomic and Molecular Sciences\",\"volume\":\"55 1\",\"pages\":\"289-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atomic and Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/JAMS.022514.031414A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atomic and Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/JAMS.022514.031414A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The theoretical research on the chiral transition of ibuprofen molecules under isolated conditions
In this article, we do a research on the chiral shift process of the isolated alpha alanine molecule using the basis set of 6-31+g(d,p), which is based on density functional theory B3LYP. Furthermore, the chiral transition path reaction potential en- ergy surface of ibuprofen molecule is drawn by looking for the extreme value point structure including the transition state and intermediate. Finally, the geometry and electronic structure properties of extreme value point are also analyzed. The results show that there are two achieve reaction paths of ibuprofen from S-type to R-type. Path 1 consists of three transition states and two intermediate states. Path 2 includes four transition states and three intermediate states. On the reaction path, the greatest barrier which is from the transfer of hydrogen in chiral carbon to oxygen in carboxyl, is 73.54 Kcal/mol. The researchprovides a theoretical reference to further realize some important application value over the chiral transition reaction control of point chiral molecule.