{"title":"一种用于无人机操纵轨迹跟踪的全局快速终端滑模控制","authors":"Qian Fang, Pengjun Mao, Lirui Shen, Jun Wang","doi":"10.1177/00202940221110946","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Manipulation (UAM) is a novel type of Unmanned Aerial Vehicle (UAV) equipped with manipulators instead of manual operation in hazardous and unreachable environments. The combination of UAV and manipulator unavoidably causes a significant predicament due to the increase of nonlinearity and coupling of the UAM system. Consequently, the system’s robustness becomes more vulnerable in the presence of system uncertainty and external disturbance. In addition, as a real-time embedded system, rapid and precise tracking of the desired trajectory is an essential aspect of UAM performance. This study aims to establish the dynamic model of UAM and propose a global fast terminal sliding mode controller for trajectory tracking. The controller is derived from Lyapunov theory to ensure the stability of the closed-loop system. We propose a set of illustrative metrics to evaluate the performance of the designed controller and compare it with the other two controllers by simulation. The results show that the proposed controller can effectively reduce the convergence time of tracking error and has good robustness and mechanical properties. And experimental results also verified its effectiveness.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"123 1 1","pages":"763 - 776"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A global fast terminal sliding mode control for trajectory tracking of unmanned aerial manipulation\",\"authors\":\"Qian Fang, Pengjun Mao, Lirui Shen, Jun Wang\",\"doi\":\"10.1177/00202940221110946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Aerial Manipulation (UAM) is a novel type of Unmanned Aerial Vehicle (UAV) equipped with manipulators instead of manual operation in hazardous and unreachable environments. The combination of UAV and manipulator unavoidably causes a significant predicament due to the increase of nonlinearity and coupling of the UAM system. Consequently, the system’s robustness becomes more vulnerable in the presence of system uncertainty and external disturbance. In addition, as a real-time embedded system, rapid and precise tracking of the desired trajectory is an essential aspect of UAM performance. This study aims to establish the dynamic model of UAM and propose a global fast terminal sliding mode controller for trajectory tracking. The controller is derived from Lyapunov theory to ensure the stability of the closed-loop system. We propose a set of illustrative metrics to evaluate the performance of the designed controller and compare it with the other two controllers by simulation. The results show that the proposed controller can effectively reduce the convergence time of tracking error and has good robustness and mechanical properties. And experimental results also verified its effectiveness.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"123 1 1\",\"pages\":\"763 - 776\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940221110946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940221110946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A global fast terminal sliding mode control for trajectory tracking of unmanned aerial manipulation
Unmanned Aerial Manipulation (UAM) is a novel type of Unmanned Aerial Vehicle (UAV) equipped with manipulators instead of manual operation in hazardous and unreachable environments. The combination of UAV and manipulator unavoidably causes a significant predicament due to the increase of nonlinearity and coupling of the UAM system. Consequently, the system’s robustness becomes more vulnerable in the presence of system uncertainty and external disturbance. In addition, as a real-time embedded system, rapid and precise tracking of the desired trajectory is an essential aspect of UAM performance. This study aims to establish the dynamic model of UAM and propose a global fast terminal sliding mode controller for trajectory tracking. The controller is derived from Lyapunov theory to ensure the stability of the closed-loop system. We propose a set of illustrative metrics to evaluate the performance of the designed controller and compare it with the other two controllers by simulation. The results show that the proposed controller can effectively reduce the convergence time of tracking error and has good robustness and mechanical properties. And experimental results also verified its effectiveness.