{"title":"Rayleigh长期函数对水平振动源时谐渐近解的影响","authors":"Boao Jin, Yan Gao, Zhongkun Jin","doi":"10.1142/s2591728521500225","DOIUrl":null,"url":null,"abstract":"The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transformation. This leads to the multi-leaf characteristics of the integrand and the asymptotic solution is affected by the Rayleigh poles, resulting in a mismatch between the asymptotic time-harmonic solution and the finite element results. In this paper, an integral expression for the time-harmonic solution of the surface horizontal vibration source is derived using the integral transformation method. The asymptotic results using the steepest descent method are decomposed into the analytical component, the modified component of the poles and the residual component of the poles. Expressions for each component are given, with particular emphasis on the effect of the Rayleigh secular function on the asymptotic solution. It is found that for the multi-leaf problem, the asymptotic expressions related to shear waves should use the results of the [Formula: see text] leaf, while the asymptotic expressions related to compressional waves should use the results of the [Formula: see text] leaf when [Formula: see text]. Comparison of the numerical and semi-analytical solutions is made to verify the expressions for the analytical components, along with the selection of the Riemann surface.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"50 6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources\",\"authors\":\"Boao Jin, Yan Gao, Zhongkun Jin\",\"doi\":\"10.1142/s2591728521500225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transformation. This leads to the multi-leaf characteristics of the integrand and the asymptotic solution is affected by the Rayleigh poles, resulting in a mismatch between the asymptotic time-harmonic solution and the finite element results. In this paper, an integral expression for the time-harmonic solution of the surface horizontal vibration source is derived using the integral transformation method. The asymptotic results using the steepest descent method are decomposed into the analytical component, the modified component of the poles and the residual component of the poles. Expressions for each component are given, with particular emphasis on the effect of the Rayleigh secular function on the asymptotic solution. It is found that for the multi-leaf problem, the asymptotic expressions related to shear waves should use the results of the [Formula: see text] leaf, while the asymptotic expressions related to compressional waves should use the results of the [Formula: see text] leaf when [Formula: see text]. Comparison of the numerical and semi-analytical solutions is made to verify the expressions for the analytical components, along with the selection of the Riemann surface.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"50 6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2591728521500225\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2591728521500225","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Effects of the Rayleigh Secular Function on Time-Harmonic Asymptotic Solutions Due to Horizontal Vibration Sources
The time-harmonic asymptotic solutions due to the surface horizontal vibration sources provide the theoretical basis in the applications of buried object detection. In the integral transformation method, the Rayleigh secular function appears in the denominator of the integrand of the inverse transformation. This leads to the multi-leaf characteristics of the integrand and the asymptotic solution is affected by the Rayleigh poles, resulting in a mismatch between the asymptotic time-harmonic solution and the finite element results. In this paper, an integral expression for the time-harmonic solution of the surface horizontal vibration source is derived using the integral transformation method. The asymptotic results using the steepest descent method are decomposed into the analytical component, the modified component of the poles and the residual component of the poles. Expressions for each component are given, with particular emphasis on the effect of the Rayleigh secular function on the asymptotic solution. It is found that for the multi-leaf problem, the asymptotic expressions related to shear waves should use the results of the [Formula: see text] leaf, while the asymptotic expressions related to compressional waves should use the results of the [Formula: see text] leaf when [Formula: see text]. Comparison of the numerical and semi-analytical solutions is made to verify the expressions for the analytical components, along with the selection of the Riemann surface.
期刊介绍:
The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics.
Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.