Edelman-Greene双射的性质

IF 0.4 Q4 MATHEMATICS, APPLIED
Svante Linusson, Samu Potka
{"title":"Edelman-Greene双射的性质","authors":"Svante Linusson, Samu Potka","doi":"10.4310/joc.2020.v11.n2.a2","DOIUrl":null,"url":null,"abstract":"Edelman and Greene constructed a correspondence between reduced words of the reverse permutation and standard Young tableaux. We prove that for any reduced word the shape of the region of the insertion tableau containing the smallest possible entries evolves exactly as the upper-left component of the permutation's (Rothe) diagram. Properties of the Edelman-Greene bijection restricted to 132-avoiding and 2143-avoiding permutations are presented. We also consider the Edelman-Greene bijection applied to non-reduced words.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"113 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Properties of the Edelman–Greene bijection\",\"authors\":\"Svante Linusson, Samu Potka\",\"doi\":\"10.4310/joc.2020.v11.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edelman and Greene constructed a correspondence between reduced words of the reverse permutation and standard Young tableaux. We prove that for any reduced word the shape of the region of the insertion tableau containing the smallest possible entries evolves exactly as the upper-left component of the permutation's (Rothe) diagram. Properties of the Edelman-Greene bijection restricted to 132-avoiding and 2143-avoiding permutations are presented. We also consider the Edelman-Greene bijection applied to non-reduced words.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2020.v11.n2.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n2.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

埃德尔曼和格林构建了一种反向排列的简化词与标准杨氏场景之间的对应关系。我们证明了对于任何约简词,包含最小可能条目的插入表区域的形状完全演变为排列(Rothe)图的左上角分量。给出了Edelman-Greene双射在132-avoiding置换和2143-avoiding置换下的性质。我们还考虑将Edelman-Greene双射应用于非略读词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of the Edelman–Greene bijection
Edelman and Greene constructed a correspondence between reduced words of the reverse permutation and standard Young tableaux. We prove that for any reduced word the shape of the region of the insertion tableau containing the smallest possible entries evolves exactly as the upper-left component of the permutation's (Rothe) diagram. Properties of the Edelman-Greene bijection restricted to 132-avoiding and 2143-avoiding permutations are presented. We also consider the Edelman-Greene bijection applied to non-reduced words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信