利用无监督深度学习方法识别跟踪应用中的扩散状态

Hélène Kabbech, Ihor Smal
{"title":"利用无监督深度学习方法识别跟踪应用中的扩散状态","authors":"Hélène Kabbech, Ihor Smal","doi":"10.1109/ISBI52829.2022.9761672","DOIUrl":null,"url":null,"abstract":"The most widely used method for analysis of diffusive motion in particle tracking is based on estimation of the mean squared displacement (MSD) and subsequently relevant motion parameters. This approach is only valid for a population of particles exhibiting a single type of motion (e.g., super or sub-diffusive). Thus, to deal with trajectories that describe dynamics with switching motion patterns, trajectory segmentation techniques are of major importance.Here, we propose an unsupervised trajectory segmentation technique, which employs the ideas of the state-of-the-art image denoising \"noise2noise\" approach. Using typical single-particle tracking data, our method is capable of unsupervised trajectory segmentation in the most difficult situations (e.g. unknown number of purely diffusive states), and computation of the relevant parameters. The applicability of the method is demonstrated using simulated and real experimental data, showing that its performance is comparable to similar top performing supervised methods.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"142 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of Diffusive States in Tracking Applications Using Unsupervised Deep Learning Methods\",\"authors\":\"Hélène Kabbech, Ihor Smal\",\"doi\":\"10.1109/ISBI52829.2022.9761672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most widely used method for analysis of diffusive motion in particle tracking is based on estimation of the mean squared displacement (MSD) and subsequently relevant motion parameters. This approach is only valid for a population of particles exhibiting a single type of motion (e.g., super or sub-diffusive). Thus, to deal with trajectories that describe dynamics with switching motion patterns, trajectory segmentation techniques are of major importance.Here, we propose an unsupervised trajectory segmentation technique, which employs the ideas of the state-of-the-art image denoising \\\"noise2noise\\\" approach. Using typical single-particle tracking data, our method is capable of unsupervised trajectory segmentation in the most difficult situations (e.g. unknown number of purely diffusive states), and computation of the relevant parameters. The applicability of the method is demonstrated using simulated and real experimental data, showing that its performance is comparable to similar top performing supervised methods.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"142 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

粒子跟踪中最常用的扩散运动分析方法是基于均方位移(MSD)和相关运动参数的估计。这种方法只适用于表现出单一运动类型的粒子群(例如,超扩散或次扩散)。因此,为了处理具有切换运动模式的描述动力学的轨迹,轨迹分割技术非常重要。在这里,我们提出了一种无监督的轨迹分割技术,它采用了最先进的图像去噪“noise2noise”方法的思想。利用典型的单粒子跟踪数据,我们的方法能够在最困难的情况下(如未知数量的纯扩散状态)进行无监督轨迹分割,并计算相关参数。通过模拟和实际实验数据验证了该方法的适用性,表明其性能与同类性能最高的监督方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Diffusive States in Tracking Applications Using Unsupervised Deep Learning Methods
The most widely used method for analysis of diffusive motion in particle tracking is based on estimation of the mean squared displacement (MSD) and subsequently relevant motion parameters. This approach is only valid for a population of particles exhibiting a single type of motion (e.g., super or sub-diffusive). Thus, to deal with trajectories that describe dynamics with switching motion patterns, trajectory segmentation techniques are of major importance.Here, we propose an unsupervised trajectory segmentation technique, which employs the ideas of the state-of-the-art image denoising "noise2noise" approach. Using typical single-particle tracking data, our method is capable of unsupervised trajectory segmentation in the most difficult situations (e.g. unknown number of purely diffusive states), and computation of the relevant parameters. The applicability of the method is demonstrated using simulated and real experimental data, showing that its performance is comparable to similar top performing supervised methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信