考虑引力场相关性的湍流巨分子云中的声波

IF 0.7 Q3 PHYSICS, MULTIDISCIPLINARY
Îëåñÿ Ãîí÷àðà, ïðîñï. Ãàãàðiíà
{"title":"考虑引力场相关性的湍流巨分子云中的声波","authors":"Îëåñÿ Ãîí÷àðà, ïðîñï. Ãàãàðiíà","doi":"10.30970/JPS.25.1903","DOIUrl":null,"url":null,"abstract":"A hydrodynamic model for the description of small acoustic oscillations in a turbulent giant molecular cloud is constructed by averaging the Euler equation over Reynolds, taking into account the turbulence of a self-consistent gravitational (cid:28)eld that has zero (cid:28)rst moment and nonzero second moment in equilibrium. It is shown that, in addition to the Reynolds turbulent stress tensor, the momentum (cid:29)ow tensor includes the second correlation moment of the gravitational (cid:28)eld strength, both potential and vortex, for which the time equation is obtained from the Einstein equations in non-relativistic approximation. After linearization, this equation is ∂ t (cid:104) g i g k (cid:105) = ( ∂ k v i + ∂ i v k − 2 ∂ l v l δ ik ) (cid:10) g 2 (cid:11) 0 / 6 , where ∂ t ant ∂ i are the time and spatial derivatives, v i is the mass velocity component, (cid:10) g 2 (cid:11) 0 is the square of a self-consistent gravitational (cid:28)eld strength equilibrium value. Two transverse and longitudinal branches of acoustic oscillations in a homogeneous isotropic cloud are obtained. Zeroing of the transverse oscillations velocity gives a limiting condition for the stability of the giant molecular cloud (cid:10) v 2 (cid:11) 0 − (cid:10) g 2 (cid:11) 0 / (8 πGρ 0 ) ≥ 0 , where (cid:10) v 2 (cid:11) 0 is the mean square turbulent velocity, G is the gravitational constant, ρ 0 is the equilibrium density value. Thus, the doubled energy density of the turbulent motion must be greater than the gravitational (cid:28)eld energy density. It is shown that the thermal motion does not a(cid:27)ect the stability of the system. For the spherical shape of the cloud, the radius of the giant molecular cloud is obtained, which is consistent with observational data.","PeriodicalId":43482,"journal":{"name":"Journal of Physical Studies","volume":"3 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acoustic waves in a turbulent giant molecular cloud taking into account the correlations of gravitational field\",\"authors\":\"Îëåñÿ Ãîí÷àðà, ïðîñï. Ãàãàðiíà\",\"doi\":\"10.30970/JPS.25.1903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hydrodynamic model for the description of small acoustic oscillations in a turbulent giant molecular cloud is constructed by averaging the Euler equation over Reynolds, taking into account the turbulence of a self-consistent gravitational (cid:28)eld that has zero (cid:28)rst moment and nonzero second moment in equilibrium. It is shown that, in addition to the Reynolds turbulent stress tensor, the momentum (cid:29)ow tensor includes the second correlation moment of the gravitational (cid:28)eld strength, both potential and vortex, for which the time equation is obtained from the Einstein equations in non-relativistic approximation. After linearization, this equation is ∂ t (cid:104) g i g k (cid:105) = ( ∂ k v i + ∂ i v k − 2 ∂ l v l δ ik ) (cid:10) g 2 (cid:11) 0 / 6 , where ∂ t ant ∂ i are the time and spatial derivatives, v i is the mass velocity component, (cid:10) g 2 (cid:11) 0 is the square of a self-consistent gravitational (cid:28)eld strength equilibrium value. Two transverse and longitudinal branches of acoustic oscillations in a homogeneous isotropic cloud are obtained. Zeroing of the transverse oscillations velocity gives a limiting condition for the stability of the giant molecular cloud (cid:10) v 2 (cid:11) 0 − (cid:10) g 2 (cid:11) 0 / (8 πGρ 0 ) ≥ 0 , where (cid:10) v 2 (cid:11) 0 is the mean square turbulent velocity, G is the gravitational constant, ρ 0 is the equilibrium density value. Thus, the doubled energy density of the turbulent motion must be greater than the gravitational (cid:28)eld energy density. It is shown that the thermal motion does not a(cid:27)ect the stability of the system. For the spherical shape of the cloud, the radius of the giant molecular cloud is obtained, which is consistent with observational data.\",\"PeriodicalId\":43482,\"journal\":{\"name\":\"Journal of Physical Studies\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/JPS.25.1903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/JPS.25.1903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

考虑具有零(cid:28)静止矩和非零平衡第二矩的自一致引力场(cid:28)的湍流,通过对Reynolds上的欧拉方程进行平均,建立了描述湍流巨大分子云中小声波振荡的流体动力学模型。结果表明,除了雷诺湍流应力张量外,动量(cid:29)ow张量还包含引力场强(cid:28)的第二次相关矩,即势和涡,其时间方程由非相对论近似的爱因斯坦方程得到。线性化后,该方程为∂t (cid:104) g i g k (cid:105) =(∂k vi +∂iv k−2∂l v l δ ik) (cid:10) g 2 (cid:11) 0 / 6,其中∂t ant∂i是时间和空间导数,vi是质量速度分量,(cid:10) g 2 (cid:11) 0是自洽引力(cid:28)场强平衡值的平方。得到了均匀各向同性云中声振荡的两个横向和纵向分支。横向振荡速度归零给出了巨大分子云(cid:10) v2 (cid:11) 0 - (cid:10) g2 (cid:11) 0 / (8 πGρ 0)≥0的稳定性的极限条件,其中(cid:10) v2 (cid:11) 0为湍流速度的均方,g为引力常数,ρ 0为平衡密度值。因此,紊流运动的倍能量密度必须大于重力场(cid:28)的能量密度。结果表明,热运动不影响系统的稳定性。对于云的球形,得到了巨分子云的半径,与观测数据一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic waves in a turbulent giant molecular cloud taking into account the correlations of gravitational field
A hydrodynamic model for the description of small acoustic oscillations in a turbulent giant molecular cloud is constructed by averaging the Euler equation over Reynolds, taking into account the turbulence of a self-consistent gravitational (cid:28)eld that has zero (cid:28)rst moment and nonzero second moment in equilibrium. It is shown that, in addition to the Reynolds turbulent stress tensor, the momentum (cid:29)ow tensor includes the second correlation moment of the gravitational (cid:28)eld strength, both potential and vortex, for which the time equation is obtained from the Einstein equations in non-relativistic approximation. After linearization, this equation is ∂ t (cid:104) g i g k (cid:105) = ( ∂ k v i + ∂ i v k − 2 ∂ l v l δ ik ) (cid:10) g 2 (cid:11) 0 / 6 , where ∂ t ant ∂ i are the time and spatial derivatives, v i is the mass velocity component, (cid:10) g 2 (cid:11) 0 is the square of a self-consistent gravitational (cid:28)eld strength equilibrium value. Two transverse and longitudinal branches of acoustic oscillations in a homogeneous isotropic cloud are obtained. Zeroing of the transverse oscillations velocity gives a limiting condition for the stability of the giant molecular cloud (cid:10) v 2 (cid:11) 0 − (cid:10) g 2 (cid:11) 0 / (8 πGρ 0 ) ≥ 0 , where (cid:10) v 2 (cid:11) 0 is the mean square turbulent velocity, G is the gravitational constant, ρ 0 is the equilibrium density value. Thus, the doubled energy density of the turbulent motion must be greater than the gravitational (cid:28)eld energy density. It is shown that the thermal motion does not a(cid:27)ect the stability of the system. For the spherical shape of the cloud, the radius of the giant molecular cloud is obtained, which is consistent with observational data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physical Studies
Journal of Physical Studies PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
20.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信