许多都比一个更好——精准肿瘤学的下一代多变量生物标志物

Jinyan Du, D. Kirouac, B. Schoeberl
{"title":"许多都比一个更好——精准肿瘤学的下一代多变量生物标志物","authors":"Jinyan Du, D. Kirouac, B. Schoeberl","doi":"10.14800/CCM.1484","DOIUrl":null,"url":null,"abstract":"Existing companion diagnostics have helped to match drug treatments to patients. However, they are largely restricted to single-molecule, single-time-point measurements, which cannot capture the full dynamic complexity of cancer biology. The development of multivariate and even dynamic biomarkers for diagnostic assays could allow more patients to benefit from improved drug regimens. Here we describe our work which provides a case study of multivariate biomarkers where we integrated experimental data generated using multivariate profiling technologies with a variety of computational modeling and simulation methods to identify such biomarkers and make clinical predictions on their therapeutic utility. We believe this approach of integrating multivariate profiling technologies and computational models, and iterating between experimental discovery and model predictions, will be required to develop the next generation of multivariate diagnostics and realize the promise of precision medicine.","PeriodicalId":9576,"journal":{"name":"Cancer cell & microenvironment","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many are better than one - next generation multivariate biomarkers for precision oncology\",\"authors\":\"Jinyan Du, D. Kirouac, B. Schoeberl\",\"doi\":\"10.14800/CCM.1484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing companion diagnostics have helped to match drug treatments to patients. However, they are largely restricted to single-molecule, single-time-point measurements, which cannot capture the full dynamic complexity of cancer biology. The development of multivariate and even dynamic biomarkers for diagnostic assays could allow more patients to benefit from improved drug regimens. Here we describe our work which provides a case study of multivariate biomarkers where we integrated experimental data generated using multivariate profiling technologies with a variety of computational modeling and simulation methods to identify such biomarkers and make clinical predictions on their therapeutic utility. We believe this approach of integrating multivariate profiling technologies and computational models, and iterating between experimental discovery and model predictions, will be required to develop the next generation of multivariate diagnostics and realize the promise of precision medicine.\",\"PeriodicalId\":9576,\"journal\":{\"name\":\"Cancer cell & microenvironment\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer cell & microenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/CCM.1484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer cell & microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/CCM.1484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的伴随诊断有助于将药物治疗与患者相匹配。然而,它们在很大程度上局限于单分子、单时间点测量,无法捕捉到癌症生物学的全部动态复杂性。用于诊断分析的多变量甚至动态生物标志物的发展可以使更多的患者受益于改进的药物治疗方案。在这里,我们描述了我们的工作,提供了一个多变量生物标志物的案例研究,我们将使用多变量分析技术生成的实验数据与各种计算建模和模拟方法相结合,以识别这些生物标志物并对其治疗效用进行临床预测。我们相信,这种整合多元分析技术和计算模型的方法,以及在实验发现和模型预测之间迭代,将是开发下一代多元诊断和实现精准医疗承诺所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Many are better than one - next generation multivariate biomarkers for precision oncology
Existing companion diagnostics have helped to match drug treatments to patients. However, they are largely restricted to single-molecule, single-time-point measurements, which cannot capture the full dynamic complexity of cancer biology. The development of multivariate and even dynamic biomarkers for diagnostic assays could allow more patients to benefit from improved drug regimens. Here we describe our work which provides a case study of multivariate biomarkers where we integrated experimental data generated using multivariate profiling technologies with a variety of computational modeling and simulation methods to identify such biomarkers and make clinical predictions on their therapeutic utility. We believe this approach of integrating multivariate profiling technologies and computational models, and iterating between experimental discovery and model predictions, will be required to develop the next generation of multivariate diagnostics and realize the promise of precision medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信