基于数据挖掘的空间聚类算法研究

Runtao Lv, Jin Zhao, Yu Li
{"title":"基于数据挖掘的空间聚类算法研究","authors":"Runtao Lv, Jin Zhao, Yu Li","doi":"10.14257/ijdta.2016.9.12.20","DOIUrl":null,"url":null,"abstract":"We extended the online learning strategy and scalable clustering technique to soft subspace clustering, and propose two online soft subspace clustering methods, OFWSC and OEWSC. The proposed evolving soft subspace clustering algorithms can not only reveal the important local subspace characteristics of high dimensional data, but also leverage on the effectiveness of online learning scheme, as well as the ability of scalable clustering methods for the large or streaming data. Furthermore, we apply our proposed algorithms to text clustering of information retrieval, gene expression data clustering, face image classification and the problem of predicting disulfide connectivity.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"6 1","pages":"217-230"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Spatial Clustering Algorithm based on Data Mining\",\"authors\":\"Runtao Lv, Jin Zhao, Yu Li\",\"doi\":\"10.14257/ijdta.2016.9.12.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extended the online learning strategy and scalable clustering technique to soft subspace clustering, and propose two online soft subspace clustering methods, OFWSC and OEWSC. The proposed evolving soft subspace clustering algorithms can not only reveal the important local subspace characteristics of high dimensional data, but also leverage on the effectiveness of online learning scheme, as well as the ability of scalable clustering methods for the large or streaming data. Furthermore, we apply our proposed algorithms to text clustering of information retrieval, gene expression data clustering, face image classification and the problem of predicting disulfide connectivity.\",\"PeriodicalId\":13926,\"journal\":{\"name\":\"International journal of database theory and application\",\"volume\":\"6 1\",\"pages\":\"217-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of database theory and application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/ijdta.2016.9.12.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijdta.2016.9.12.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将在线学习策略和可扩展聚类技术扩展到软子空间聚类,提出了两种在线软子空间聚类方法OFWSC和OEWSC。所提出的演化软子空间聚类算法不仅可以揭示高维数据的重要局部子空间特征,而且可以利用在线学习方案的有效性,以及对大型数据或流数据的可扩展聚类方法的能力。此外,我们将提出的算法应用于信息检索中的文本聚类、基因表达数据聚类、人脸图像分类和预测二硫连通性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Spatial Clustering Algorithm based on Data Mining
We extended the online learning strategy and scalable clustering technique to soft subspace clustering, and propose two online soft subspace clustering methods, OFWSC and OEWSC. The proposed evolving soft subspace clustering algorithms can not only reveal the important local subspace characteristics of high dimensional data, but also leverage on the effectiveness of online learning scheme, as well as the ability of scalable clustering methods for the large or streaming data. Furthermore, we apply our proposed algorithms to text clustering of information retrieval, gene expression data clustering, face image classification and the problem of predicting disulfide connectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信