Matrices-One审查

Balasubramani Prema Rangasamy
{"title":"Matrices-One审查","authors":"Balasubramani Prema Rangasamy","doi":"10.4236/alamt.2019.93004","DOIUrl":null,"url":null,"abstract":"To explore the various kind of matrices, matrix multiplication, identity matrix, characteristic equation, minimal polynomial and diagonalization, my paper investigates matrices and algebraic operations defined on them. These matrices may be viewed as rectangular array of elements where each entry depends on two subscripts. System of linear equations and their solutions may be efficiently investigated using the language of matrices. Furthermore, certain abstract objects introduced in the end of my papers, such as I-matrix, J-matrix, Transprocal of certain matrix, transpose of transprocal matrix, i.e. transprocose matrix, super orthogonality, super unitary, trans othogonaliity, and trans orthoprocal, can be represented by this matrix. On the other hand, the abstract treatment of linear algebra presented later will give us a new insight into the structure of these matrices. The entries in our matrices will come from some arbitrary, but fixed, field K.","PeriodicalId":65610,"journal":{"name":"线性代数与矩阵理论研究进展(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrices—One Review\",\"authors\":\"Balasubramani Prema Rangasamy\",\"doi\":\"10.4236/alamt.2019.93004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To explore the various kind of matrices, matrix multiplication, identity matrix, characteristic equation, minimal polynomial and diagonalization, my paper investigates matrices and algebraic operations defined on them. These matrices may be viewed as rectangular array of elements where each entry depends on two subscripts. System of linear equations and their solutions may be efficiently investigated using the language of matrices. Furthermore, certain abstract objects introduced in the end of my papers, such as I-matrix, J-matrix, Transprocal of certain matrix, transpose of transprocal matrix, i.e. transprocose matrix, super orthogonality, super unitary, trans othogonaliity, and trans orthoprocal, can be represented by this matrix. On the other hand, the abstract treatment of linear algebra presented later will give us a new insight into the structure of these matrices. The entries in our matrices will come from some arbitrary, but fixed, field K.\",\"PeriodicalId\":65610,\"journal\":{\"name\":\"线性代数与矩阵理论研究进展(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"线性代数与矩阵理论研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/alamt.2019.93004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"线性代数与矩阵理论研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/alamt.2019.93004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了探讨各种矩阵、矩阵乘法、单位矩阵、特征方程、极小多项式和对角化,本文研究了矩阵及其上定义的代数运算。这些矩阵可以看作是元素的矩形数组,其中每个元素依赖于两个下标。用矩阵的语言可以有效地研究线性方程组及其解。此外,本文最后介绍的一些抽象对象,如i矩阵、j矩阵、某矩阵的反正切、反正切矩阵的转置,即反正切矩阵、超正交性、超幺正性、反正交性、反正交等,都可以用这个矩阵来表示。另一方面,稍后提出的线性代数的抽象处理将使我们对这些矩阵的结构有新的认识。矩阵中的元素来自某个任意的,但是固定的域K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrices—One Review
To explore the various kind of matrices, matrix multiplication, identity matrix, characteristic equation, minimal polynomial and diagonalization, my paper investigates matrices and algebraic operations defined on them. These matrices may be viewed as rectangular array of elements where each entry depends on two subscripts. System of linear equations and their solutions may be efficiently investigated using the language of matrices. Furthermore, certain abstract objects introduced in the end of my papers, such as I-matrix, J-matrix, Transprocal of certain matrix, transpose of transprocal matrix, i.e. transprocose matrix, super orthogonality, super unitary, trans othogonaliity, and trans orthoprocal, can be represented by this matrix. On the other hand, the abstract treatment of linear algebra presented later will give us a new insight into the structure of these matrices. The entries in our matrices will come from some arbitrary, but fixed, field K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信