有限罗斯比数下平衡椭球涡

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
W. McKiver
{"title":"有限罗斯比数下平衡椭球涡","authors":"W. McKiver","doi":"10.1080/03091929.2020.1755671","DOIUrl":null,"url":null,"abstract":"ABSTRACT Here we examine the motion of an isolated ellipsoidal vortex in a rotating stratified fluid. We derive an analytical solution to a set of balanced equations at the next order to quasi-geostrophic theory, providing insights into geophysical vortices at finite Rossby number ε. This is achieved through the solution of a set of complicated Poisson equations. Though complicated, the analytical solution give rise to a velocity field that depends linearly on the spatial coordinates inside the vortex, and, thus preserves the ellipsoidal form. From this general solution, we determine a number of equilibria where the vortex rotates steadily about the vertical axis and examine their stability. At the next order to QG, one finds asymmetry in the behaviour of cyclonic and anti-cyclonic vortices, with anti-cyclonic vortices rotating faster and generally more unstable than cyclonic vortices.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"64 1","pages":"453 - 480"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Balanced ellipsoidal vortex at finite Rossby number\",\"authors\":\"W. McKiver\",\"doi\":\"10.1080/03091929.2020.1755671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Here we examine the motion of an isolated ellipsoidal vortex in a rotating stratified fluid. We derive an analytical solution to a set of balanced equations at the next order to quasi-geostrophic theory, providing insights into geophysical vortices at finite Rossby number ε. This is achieved through the solution of a set of complicated Poisson equations. Though complicated, the analytical solution give rise to a velocity field that depends linearly on the spatial coordinates inside the vortex, and, thus preserves the ellipsoidal form. From this general solution, we determine a number of equilibria where the vortex rotates steadily about the vertical axis and examine their stability. At the next order to QG, one finds asymmetry in the behaviour of cyclonic and anti-cyclonic vortices, with anti-cyclonic vortices rotating faster and generally more unstable than cyclonic vortices.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"64 1\",\"pages\":\"453 - 480\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1755671\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1755671","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 5

摘要

在这里,我们研究了一个孤立的椭球涡旋在旋转分层流体中的运动。我们在准地转理论的下一阶推导了一组平衡方程的解析解,为有限罗斯比数ε下的地球物理涡旋提供了见解。这是通过求解一组复杂的泊松方程来实现的。虽然复杂,但解析解产生了一个速度场,它线性依赖于旋涡内部的空间坐标,因此保持了椭球形。从这个通解中,我们确定了一些漩涡沿垂直轴稳定旋转的平衡状态,并检验了它们的稳定性。在QG的下一阶,人们发现气旋和反气旋涡旋的行为不对称,反气旋涡旋的旋转速度更快,通常比气旋涡旋更不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balanced ellipsoidal vortex at finite Rossby number
ABSTRACT Here we examine the motion of an isolated ellipsoidal vortex in a rotating stratified fluid. We derive an analytical solution to a set of balanced equations at the next order to quasi-geostrophic theory, providing insights into geophysical vortices at finite Rossby number ε. This is achieved through the solution of a set of complicated Poisson equations. Though complicated, the analytical solution give rise to a velocity field that depends linearly on the spatial coordinates inside the vortex, and, thus preserves the ellipsoidal form. From this general solution, we determine a number of equilibria where the vortex rotates steadily about the vertical axis and examine their stability. At the next order to QG, one finds asymmetry in the behaviour of cyclonic and anti-cyclonic vortices, with anti-cyclonic vortices rotating faster and generally more unstable than cyclonic vortices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信