机器学习驱动有机组合薄膜库的高通量和自主掠入射x射线衍射映射

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shingo Maruyama*, Kana Ouchi, Tomoyuki Koganezawa, Yuji Matsumoto*
{"title":"机器学习驱动有机组合薄膜库的高通量和自主掠入射x射线衍射映射","authors":"Shingo Maruyama*,&nbsp;Kana Ouchi,&nbsp;Tomoyuki Koganezawa,&nbsp;Yuji Matsumoto*","doi":"10.1021/acscombsci.0c00037","DOIUrl":null,"url":null,"abstract":"<p >High-throughput X-ray diffraction (XRD) is one of the most indispensable techniques to accelerate materials research. However, the conventional XRD analysis with a large beam spot size may not best appropriate in a case for characterizing organic materials thin film libraries, in which various films prepared under different process conditions are integrated on a single substrate. Here, we demonstrate that high-resolution grazing incident XRD mapping analysis is useful for this purpose: A 2-dimensional organic combinatorial thin film library with the composition and growth temperature varied along the two orthogonal axes was successfully analyzed by using synchrotron microbeam X-ray. Moreover, we show that the time-consuming mapping process is accelerated with the aid of a machine learning technique termed as Bayesian optimization based on Gaussian process regression.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.0c00037","citationCount":"5","resultStr":"{\"title\":\"High-Throughput and Autonomous Grazing Incidence X-ray Diffraction Mapping of Organic Combinatorial Thin-Film Library Driven by Machine Learning\",\"authors\":\"Shingo Maruyama*,&nbsp;Kana Ouchi,&nbsp;Tomoyuki Koganezawa,&nbsp;Yuji Matsumoto*\",\"doi\":\"10.1021/acscombsci.0c00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-throughput X-ray diffraction (XRD) is one of the most indispensable techniques to accelerate materials research. However, the conventional XRD analysis with a large beam spot size may not best appropriate in a case for characterizing organic materials thin film libraries, in which various films prepared under different process conditions are integrated on a single substrate. Here, we demonstrate that high-resolution grazing incident XRD mapping analysis is useful for this purpose: A 2-dimensional organic combinatorial thin film library with the composition and growth temperature varied along the two orthogonal axes was successfully analyzed by using synchrotron microbeam X-ray. Moreover, we show that the time-consuming mapping process is accelerated with the aid of a machine learning technique termed as Bayesian optimization based on Gaussian process regression.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acscombsci.0c00037\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscombsci.0c00037\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.0c00037","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

高通量x射线衍射(XRD)是加速材料研究必不可少的技术之一。然而,对于在不同工艺条件下制备的各种薄膜集成在单一衬底上的有机材料薄膜库的表征,传统的大光斑的XRD分析可能不太适合。利用同步微束x射线成功地分析了组成和生长温度沿两个正交轴变化的二维有机组合薄膜库。此外,我们还表明,在基于高斯过程回归的贝叶斯优化机器学习技术的帮助下,耗时的映射过程得到了加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Throughput and Autonomous Grazing Incidence X-ray Diffraction Mapping of Organic Combinatorial Thin-Film Library Driven by Machine Learning

High-Throughput and Autonomous Grazing Incidence X-ray Diffraction Mapping of Organic Combinatorial Thin-Film Library Driven by Machine Learning

High-throughput X-ray diffraction (XRD) is one of the most indispensable techniques to accelerate materials research. However, the conventional XRD analysis with a large beam spot size may not best appropriate in a case for characterizing organic materials thin film libraries, in which various films prepared under different process conditions are integrated on a single substrate. Here, we demonstrate that high-resolution grazing incident XRD mapping analysis is useful for this purpose: A 2-dimensional organic combinatorial thin film library with the composition and growth temperature varied along the two orthogonal axes was successfully analyzed by using synchrotron microbeam X-ray. Moreover, we show that the time-consuming mapping process is accelerated with the aid of a machine learning technique termed as Bayesian optimization based on Gaussian process regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信