{"title":"基于神经调节的重复性外周磁刺激在脑卒中后运动功能恢复中的应用:叙述性综述","authors":"Jiazhen Pan, Yanyan Jia, Hao Liu","doi":"10.4103/2773-2398.340140","DOIUrl":null,"url":null,"abstract":"Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive and painless approach that can penetrate deeper structures to improve motor function in people with physical impairment due to stroke. A review of available literature was undertaken to discuss the potential mechanisms of rPMS-based neuromodulation and the application of rPMS in the recovery of motor function (e.g., muscle strength, spasticity, motor control and joint mobility, glenohumeral subluxation) after stroke. Issues of concern about parameters and safety of rPMS were also overviewed. Existing evidence has shown that suprathreshold rPMS can be a potential intervention for motor recovery in patients with stroke because of its neuromodulatory effects. However, the rPMS parameters employed by each research team are highly variable for specific lesions. Thus, more high-quality studies on the optimal rPMS protocols for different impairments are warranted in the future.","PeriodicalId":93737,"journal":{"name":"Brain network and modulation","volume":"54 1","pages":"13 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of repetitive peripheral magnetic stimulation for recovery of motor function after stroke based on neuromodulation: a narrative review\",\"authors\":\"Jiazhen Pan, Yanyan Jia, Hao Liu\",\"doi\":\"10.4103/2773-2398.340140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive and painless approach that can penetrate deeper structures to improve motor function in people with physical impairment due to stroke. A review of available literature was undertaken to discuss the potential mechanisms of rPMS-based neuromodulation and the application of rPMS in the recovery of motor function (e.g., muscle strength, spasticity, motor control and joint mobility, glenohumeral subluxation) after stroke. Issues of concern about parameters and safety of rPMS were also overviewed. Existing evidence has shown that suprathreshold rPMS can be a potential intervention for motor recovery in patients with stroke because of its neuromodulatory effects. However, the rPMS parameters employed by each research team are highly variable for specific lesions. Thus, more high-quality studies on the optimal rPMS protocols for different impairments are warranted in the future.\",\"PeriodicalId\":93737,\"journal\":{\"name\":\"Brain network and modulation\",\"volume\":\"54 1\",\"pages\":\"13 - 19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain network and modulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2773-2398.340140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain network and modulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2773-2398.340140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of repetitive peripheral magnetic stimulation for recovery of motor function after stroke based on neuromodulation: a narrative review
Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive and painless approach that can penetrate deeper structures to improve motor function in people with physical impairment due to stroke. A review of available literature was undertaken to discuss the potential mechanisms of rPMS-based neuromodulation and the application of rPMS in the recovery of motor function (e.g., muscle strength, spasticity, motor control and joint mobility, glenohumeral subluxation) after stroke. Issues of concern about parameters and safety of rPMS were also overviewed. Existing evidence has shown that suprathreshold rPMS can be a potential intervention for motor recovery in patients with stroke because of its neuromodulatory effects. However, the rPMS parameters employed by each research team are highly variable for specific lesions. Thus, more high-quality studies on the optimal rPMS protocols for different impairments are warranted in the future.