学习用户界面元素交互

Christian Degott, N. P. Borges, A. Zeller
{"title":"学习用户界面元素交互","authors":"Christian Degott, N. P. Borges, A. Zeller","doi":"10.1145/3293882.3330569","DOIUrl":null,"url":null,"abstract":"When generating tests for graphical user interfaces, one central problem is to identify how individual UI elements can be interacted with—clicking, long- or right-clicking, swiping, dragging, typing, or more. We present an approach based on reinforcement learning that automatically learns which interactions can be used for which elements, and uses this information to guide test generation. We model the problem as an instance of the multi-armed bandit problem (MAB problem) from probability theory, and show how its traditional solutions work on test generation, with and without relying on previous knowledge. The resulting guidance yields higher coverage. In our evaluation, our approach shows improvements in statement coverage between 18% (when not using any previous knowledge) and 20% (when reusing previously generated models).","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Learning user interface element interactions\",\"authors\":\"Christian Degott, N. P. Borges, A. Zeller\",\"doi\":\"10.1145/3293882.3330569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When generating tests for graphical user interfaces, one central problem is to identify how individual UI elements can be interacted with—clicking, long- or right-clicking, swiping, dragging, typing, or more. We present an approach based on reinforcement learning that automatically learns which interactions can be used for which elements, and uses this information to guide test generation. We model the problem as an instance of the multi-armed bandit problem (MAB problem) from probability theory, and show how its traditional solutions work on test generation, with and without relying on previous knowledge. The resulting guidance yields higher coverage. In our evaluation, our approach shows improvements in statement coverage between 18% (when not using any previous knowledge) and 20% (when reusing previously generated models).\",\"PeriodicalId\":20624,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3293882.3330569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293882.3330569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在为图形用户界面生成测试时,一个中心问题是确定如何与单个UI元素进行交互——单击、长击或右击、滑动、拖动、键入等等。我们提出了一种基于强化学习的方法,该方法自动学习哪些交互可以用于哪些元素,并使用该信息来指导测试生成。我们从概率论中将该问题建模为多臂强盗问题(MAB问题)的一个实例,并展示了其传统解决方案在有或没有依赖于先前知识的情况下如何在测试生成中工作。由此产生的指导产生更高的覆盖率。在我们的评估中,我们的方法显示语句覆盖率的提高在18%(不使用任何以前的知识时)和20%(重用以前生成的模型时)之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning user interface element interactions
When generating tests for graphical user interfaces, one central problem is to identify how individual UI elements can be interacted with—clicking, long- or right-clicking, swiping, dragging, typing, or more. We present an approach based on reinforcement learning that automatically learns which interactions can be used for which elements, and uses this information to guide test generation. We model the problem as an instance of the multi-armed bandit problem (MAB problem) from probability theory, and show how its traditional solutions work on test generation, with and without relying on previous knowledge. The resulting guidance yields higher coverage. In our evaluation, our approach shows improvements in statement coverage between 18% (when not using any previous knowledge) and 20% (when reusing previously generated models).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信