SDSS日志查看器:大容量SQL日志数据的可视化探索性分析

Jian Zhang, Chaomei Chen, M. Vogeley, Danny Pan, Anirudha Thakar, M. Raddick
{"title":"SDSS日志查看器:大容量SQL日志数据的可视化探索性分析","authors":"Jian Zhang, Chaomei Chen, M. Vogeley, Danny Pan, Anirudha Thakar, M. Raddick","doi":"10.1117/12.907097","DOIUrl":null,"url":null,"abstract":"User-generated Structured Query Language (SQL) queries are a rich source of information for database analysts, \ninformation scientists, and the end users of databases. In this study a group of scientists in astronomy and computer and \ninformation scientists work together to analyze a large volume of SQL log data generated by users of the Sloan Digital \nSky Survey (SDSS) data archive in order to better understand users' data seeking behavior. While statistical analysis of \nsuch logs is useful at aggregated levels, efficiently exploring specific patterns of queries is often a challenging task due \nto the typically large volume of the data, multivariate features, and data requirements specified in SQL queries. To \nenable and facilitate effective and efficient exploration of the SDSS log data, we designed an interactive visualization \ntool, called the SDSS Log Viewer, which integrates time series visualization, text visualization, and dynamic query \ntechniques. We describe two analysis scenarios of visual exploration of SDSS log data, including understanding \nunusually high daily query traffic and modeling the types of data seeking behaviors of massive query generators. The \ntwo scenarios demonstrate that the SDSS Log Viewer provides a novel and potentially valuable approach to support these \ntargeted tasks.","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"37 1","pages":"82940D"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SDSS Log Viewer : visual exploratory analysis of large-volume SQL log data\",\"authors\":\"Jian Zhang, Chaomei Chen, M. Vogeley, Danny Pan, Anirudha Thakar, M. Raddick\",\"doi\":\"10.1117/12.907097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User-generated Structured Query Language (SQL) queries are a rich source of information for database analysts, \\ninformation scientists, and the end users of databases. In this study a group of scientists in astronomy and computer and \\ninformation scientists work together to analyze a large volume of SQL log data generated by users of the Sloan Digital \\nSky Survey (SDSS) data archive in order to better understand users' data seeking behavior. While statistical analysis of \\nsuch logs is useful at aggregated levels, efficiently exploring specific patterns of queries is often a challenging task due \\nto the typically large volume of the data, multivariate features, and data requirements specified in SQL queries. To \\nenable and facilitate effective and efficient exploration of the SDSS log data, we designed an interactive visualization \\ntool, called the SDSS Log Viewer, which integrates time series visualization, text visualization, and dynamic query \\ntechniques. We describe two analysis scenarios of visual exploration of SDSS log data, including understanding \\nunusually high daily query traffic and modeling the types of data seeking behaviors of massive query generators. The \\ntwo scenarios demonstrate that the SDSS Log Viewer provides a novel and potentially valuable approach to support these \\ntargeted tasks.\",\"PeriodicalId\":89305,\"journal\":{\"name\":\"Visualization and data analysis\",\"volume\":\"37 1\",\"pages\":\"82940D\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visualization and data analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.907097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.907097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

用户生成的结构化查询语言(SQL)查询是数据库分析人员、信息科学家和数据库最终用户的丰富信息源。在本研究中,一组天文学科学家、计算机科学家和信息科学家共同分析了斯隆数字巡天(SDSS)数据档案用户生成的大量SQL日志数据,以便更好地了解用户的数据搜索行为。虽然对此类日志进行统计分析在聚合级别上很有用,但由于SQL查询中指定的数据量、多变量特性和数据需求通常很大,因此有效地探索特定的查询模式通常是一项具有挑战性的任务。为了支持和促进对SDSS日志数据的有效和高效的探索,我们设计了一个交互式可视化工具,称为SDSS日志查看器,它集成了时间序列可视化、文本可视化和动态查询技术。我们描述了SDSS日志数据可视化探索的两种分析场景,包括理解异常高的日常查询流量和建模海量查询生成器的数据搜索行为类型。这两个场景表明,SDSS Log Viewer提供了一种新颖且可能有价值的方法来支持这些目标任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDSS Log Viewer : visual exploratory analysis of large-volume SQL log data
User-generated Structured Query Language (SQL) queries are a rich source of information for database analysts, information scientists, and the end users of databases. In this study a group of scientists in astronomy and computer and information scientists work together to analyze a large volume of SQL log data generated by users of the Sloan Digital Sky Survey (SDSS) data archive in order to better understand users' data seeking behavior. While statistical analysis of such logs is useful at aggregated levels, efficiently exploring specific patterns of queries is often a challenging task due to the typically large volume of the data, multivariate features, and data requirements specified in SQL queries. To enable and facilitate effective and efficient exploration of the SDSS log data, we designed an interactive visualization tool, called the SDSS Log Viewer, which integrates time series visualization, text visualization, and dynamic query techniques. We describe two analysis scenarios of visual exploration of SDSS log data, including understanding unusually high daily query traffic and modeling the types of data seeking behaviors of massive query generators. The two scenarios demonstrate that the SDSS Log Viewer provides a novel and potentially valuable approach to support these targeted tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信