一种基于人工神经网络的光伏组件I-V特性曲线提取新方法

Ahmed Ghareeb, Maan Tamimi, Mahmoud Jaber, Saif Jaradat, T. Khatib
{"title":"一种基于人工神经网络的光伏组件I-V特性曲线提取新方法","authors":"Ahmed Ghareeb, Maan Tamimi, Mahmoud Jaber, Saif Jaradat, T. Khatib","doi":"10.1109/ICEEE2.2018.8391384","DOIUrl":null,"url":null,"abstract":"This paper presents a new I-V curve prediction method using Artificial Neural Networks (ANNs), based on two ANNs, Generalized Regression Neural Network (GRNN) and cascaded forward neural network (CFNN).Solar radiation, ambient temperature, and the specification of PV module (open circuit voltage and short circuit current at STC) are inputs for this method. This method has a high accuracy in predicting I-V curves with average Mean Absolute Percentage Error (MAPE), Mean Bias Error (MBE) and Root Mean Square Error (RMSE) are 1.09%, 0.0229(A) and 0.0336(A) respectively for the validation data.","PeriodicalId":6482,"journal":{"name":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","volume":"17 1","pages":"473-476"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new method for extracting I-V characteristic curve for photovoltaic modules using artificial neural networks\",\"authors\":\"Ahmed Ghareeb, Maan Tamimi, Mahmoud Jaber, Saif Jaradat, T. Khatib\",\"doi\":\"10.1109/ICEEE2.2018.8391384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new I-V curve prediction method using Artificial Neural Networks (ANNs), based on two ANNs, Generalized Regression Neural Network (GRNN) and cascaded forward neural network (CFNN).Solar radiation, ambient temperature, and the specification of PV module (open circuit voltage and short circuit current at STC) are inputs for this method. This method has a high accuracy in predicting I-V curves with average Mean Absolute Percentage Error (MAPE), Mean Bias Error (MBE) and Root Mean Square Error (RMSE) are 1.09%, 0.0229(A) and 0.0336(A) respectively for the validation data.\",\"PeriodicalId\":6482,\"journal\":{\"name\":\"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)\",\"volume\":\"17 1\",\"pages\":\"473-476\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE2.2018.8391384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2.2018.8391384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于广义回归神经网络(GRNN)和级联前向神经网络(CFNN)两种神经网络的I-V曲线预测方法。该方法的输入为太阳辐射、环境温度和光伏组件规格(开路电压和STC短路电流)。该方法对I-V曲线的预测精度较高,验证数据的平均绝对百分比误差(MAPE)、平均偏倚误差(MBE)和均方根误差(RMSE)分别为1.09%、0.0229(a)和0.0336(a)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for extracting I-V characteristic curve for photovoltaic modules using artificial neural networks
This paper presents a new I-V curve prediction method using Artificial Neural Networks (ANNs), based on two ANNs, Generalized Regression Neural Network (GRNN) and cascaded forward neural network (CFNN).Solar radiation, ambient temperature, and the specification of PV module (open circuit voltage and short circuit current at STC) are inputs for this method. This method has a high accuracy in predicting I-V curves with average Mean Absolute Percentage Error (MAPE), Mean Bias Error (MBE) and Root Mean Square Error (RMSE) are 1.09%, 0.0229(A) and 0.0336(A) respectively for the validation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信