Yanhui Guo, Li Wei, Zhonglin Wen, Chaorong Qi, Huanfeng Jiang
{"title":"二氧化碳转化为氨基甲酸酯的研究进展","authors":"Yanhui Guo, Li Wei, Zhonglin Wen, Chaorong Qi, Huanfeng Jiang","doi":"10.3866/PKU.WHXB202307004","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) serves as one of the major greenhouse gases in the atmosphere. However, it is also abundant, non-toxic, and renewable, making it a valuable one-carbon source. Therefore, converting CO<sub>2</sub> into valuable chemicals holds immense significance as an effective approach towards achieving carbon neutrality. Nevertheless, due to CO<sub>2</sub>'s thermodynamic stability and kinetic inertness, its activation and conversion present considerable challenges. Organic carbamates, both cyclic and acyclic, represent a crucial class of bioactive compounds found in various natural products, agricultural chemicals, and pharmaceutically relevant molecules. They are also widely used as essential intermediates in organic synthesis. Unfortunately, traditional methods for preparing organic carbamates often rely on highly toxic phosgene and its derivatives as raw materials, posing serious environmental and safety concerns and limiting practical applications. From a cost-effective and sustainable standpoint, substituting CO<sub>2</sub> for phosgene in the synthesis of organic carbamates is highly appealing. In recent decades, numerous new reactions, particularly multicomponent reactions involving CO<sub>2</sub> and amines, have emerged, providing efficient methods for constructing diverse and valuable carbamates. Some of these reactions can be conducted under transition-metal-free conditions, utilizing organic and inorganic bases, ionic liquids, or small organic molecules as catalysts or promoters. However, in certain cases, transition-metal catalysts, such as those based on copper, palladium, or silver, are required, especially when the reactions involve activating unsaturated hydrocarbons like alkenes and alkynes. Mechanistically, most of these methods involve <em>in situ</em> generation of nucleophilic CO<sub>2</sub>-amine adducts, such as carbamate salts or carbamic acids, which then react with other electrophiles or coupling partners to yield the desired carbamates. Notably, recent advancements have led to the successful development of several elegant methods for synthesizing specific types of carbamates using electrocatalysis or photocatalysis, which are not achievable through conventional thermal catalysis. This review comprehensively summarizes the recent progress in the synthesis of organic carbamates using CO<sub>2</sub> and amines under various catalytic conditions, including transition metal-free conditions, transition metal-catalysis, electrocatalysis, and photocatalysis. Additionally, the review discusses the challenges and future prospects associated with converting CO<sub>2</sub> into organic carbamates.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (117KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 4","pages":"Article 2307004"},"PeriodicalIF":10.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress on Conversion of Carbon Dioxide into Carbamates\",\"authors\":\"Yanhui Guo, Li Wei, Zhonglin Wen, Chaorong Qi, Huanfeng Jiang\",\"doi\":\"10.3866/PKU.WHXB202307004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon dioxide (CO<sub>2</sub>) serves as one of the major greenhouse gases in the atmosphere. However, it is also abundant, non-toxic, and renewable, making it a valuable one-carbon source. Therefore, converting CO<sub>2</sub> into valuable chemicals holds immense significance as an effective approach towards achieving carbon neutrality. Nevertheless, due to CO<sub>2</sub>'s thermodynamic stability and kinetic inertness, its activation and conversion present considerable challenges. Organic carbamates, both cyclic and acyclic, represent a crucial class of bioactive compounds found in various natural products, agricultural chemicals, and pharmaceutically relevant molecules. They are also widely used as essential intermediates in organic synthesis. Unfortunately, traditional methods for preparing organic carbamates often rely on highly toxic phosgene and its derivatives as raw materials, posing serious environmental and safety concerns and limiting practical applications. From a cost-effective and sustainable standpoint, substituting CO<sub>2</sub> for phosgene in the synthesis of organic carbamates is highly appealing. In recent decades, numerous new reactions, particularly multicomponent reactions involving CO<sub>2</sub> and amines, have emerged, providing efficient methods for constructing diverse and valuable carbamates. Some of these reactions can be conducted under transition-metal-free conditions, utilizing organic and inorganic bases, ionic liquids, or small organic molecules as catalysts or promoters. However, in certain cases, transition-metal catalysts, such as those based on copper, palladium, or silver, are required, especially when the reactions involve activating unsaturated hydrocarbons like alkenes and alkynes. Mechanistically, most of these methods involve <em>in situ</em> generation of nucleophilic CO<sub>2</sub>-amine adducts, such as carbamate salts or carbamic acids, which then react with other electrophiles or coupling partners to yield the desired carbamates. Notably, recent advancements have led to the successful development of several elegant methods for synthesizing specific types of carbamates using electrocatalysis or photocatalysis, which are not achievable through conventional thermal catalysis. This review comprehensively summarizes the recent progress in the synthesis of organic carbamates using CO<sub>2</sub> and amines under various catalytic conditions, including transition metal-free conditions, transition metal-catalysis, electrocatalysis, and photocatalysis. Additionally, the review discusses the challenges and future prospects associated with converting CO<sub>2</sub> into organic carbamates.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (117KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"40 4\",\"pages\":\"Article 2307004\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681824001309\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001309","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent Progress on Conversion of Carbon Dioxide into Carbamates
Carbon dioxide (CO2) serves as one of the major greenhouse gases in the atmosphere. However, it is also abundant, non-toxic, and renewable, making it a valuable one-carbon source. Therefore, converting CO2 into valuable chemicals holds immense significance as an effective approach towards achieving carbon neutrality. Nevertheless, due to CO2's thermodynamic stability and kinetic inertness, its activation and conversion present considerable challenges. Organic carbamates, both cyclic and acyclic, represent a crucial class of bioactive compounds found in various natural products, agricultural chemicals, and pharmaceutically relevant molecules. They are also widely used as essential intermediates in organic synthesis. Unfortunately, traditional methods for preparing organic carbamates often rely on highly toxic phosgene and its derivatives as raw materials, posing serious environmental and safety concerns and limiting practical applications. From a cost-effective and sustainable standpoint, substituting CO2 for phosgene in the synthesis of organic carbamates is highly appealing. In recent decades, numerous new reactions, particularly multicomponent reactions involving CO2 and amines, have emerged, providing efficient methods for constructing diverse and valuable carbamates. Some of these reactions can be conducted under transition-metal-free conditions, utilizing organic and inorganic bases, ionic liquids, or small organic molecules as catalysts or promoters. However, in certain cases, transition-metal catalysts, such as those based on copper, palladium, or silver, are required, especially when the reactions involve activating unsaturated hydrocarbons like alkenes and alkynes. Mechanistically, most of these methods involve in situ generation of nucleophilic CO2-amine adducts, such as carbamate salts or carbamic acids, which then react with other electrophiles or coupling partners to yield the desired carbamates. Notably, recent advancements have led to the successful development of several elegant methods for synthesizing specific types of carbamates using electrocatalysis or photocatalysis, which are not achievable through conventional thermal catalysis. This review comprehensively summarizes the recent progress in the synthesis of organic carbamates using CO2 and amines under various catalytic conditions, including transition metal-free conditions, transition metal-catalysis, electrocatalysis, and photocatalysis. Additionally, the review discusses the challenges and future prospects associated with converting CO2 into organic carbamates.