燃气管道瞬态的计算方法

Q3 Energy
A. S. Fikov
{"title":"燃气管道瞬态的计算方法","authors":"A. S. Fikov","doi":"10.21122/1029-7448-2021-64-5-426-458","DOIUrl":null,"url":null,"abstract":"Abstaract. An analytical solution of a system of partial differential equations describing the unsteady isothermal flow of real gases in gas pipelines is considered. Such a problem arises when studying the regularity of alterations in the instantaneous values of pressure and gas flow in main gas pipelines, for example, during startups and shutdowns of large gas consumers. Meanwhile, transients are not necessarily of a pronounced oscillatory nature, despite the fact that they are described by periodic functions. In the course of the research, the task was set to obtain a mathematical model of the process taking into account the inertial term of the equation of motion, the neglect of which is possible only if the friction losses are exceeded by 3.5–4 times over the shock pressure. An important feature of the solution that have been found is its universality, which makes it possible to significantly reduce labor costs when using it to find partial solutions to practical problems that differ in boundary conditions. The boundary conditions of the first kind are given as an arbitrary function of both the gas flow rate and its pressure. The solution is based on the widely used method of separation of Fourier variables. In order to simplify the calculations, the original differential equation is transformed in such a way that the boundary conditions acquire the property of homogeneity. It has been determined that the requirements that the boundary conditions are equal to zero at the initial moment of time introduced into the solution make it possible to obtain a concise record of the obtained analytical model, but do not limit the area of the use of the model with a surge change in the gas flow rate or pressure. The obtained analytical model of unsteady gas flow makes it possible, without using the Duhamel integral, to find analytical solutions under more complex boundary conditions than the flow rate jump. At the same time, the solutions found completely coincide with the solutions based on the Duhamel integral, but in the course of the solution that we have found it is possible to avoid integration, which has a positive effect on the applicability of this approach in the practice of engineering calculations.","PeriodicalId":52141,"journal":{"name":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for Calculating Transients in a Gas Pipeline\",\"authors\":\"A. S. Fikov\",\"doi\":\"10.21122/1029-7448-2021-64-5-426-458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstaract. An analytical solution of a system of partial differential equations describing the unsteady isothermal flow of real gases in gas pipelines is considered. Such a problem arises when studying the regularity of alterations in the instantaneous values of pressure and gas flow in main gas pipelines, for example, during startups and shutdowns of large gas consumers. Meanwhile, transients are not necessarily of a pronounced oscillatory nature, despite the fact that they are described by periodic functions. In the course of the research, the task was set to obtain a mathematical model of the process taking into account the inertial term of the equation of motion, the neglect of which is possible only if the friction losses are exceeded by 3.5–4 times over the shock pressure. An important feature of the solution that have been found is its universality, which makes it possible to significantly reduce labor costs when using it to find partial solutions to practical problems that differ in boundary conditions. The boundary conditions of the first kind are given as an arbitrary function of both the gas flow rate and its pressure. The solution is based on the widely used method of separation of Fourier variables. In order to simplify the calculations, the original differential equation is transformed in such a way that the boundary conditions acquire the property of homogeneity. It has been determined that the requirements that the boundary conditions are equal to zero at the initial moment of time introduced into the solution make it possible to obtain a concise record of the obtained analytical model, but do not limit the area of the use of the model with a surge change in the gas flow rate or pressure. The obtained analytical model of unsteady gas flow makes it possible, without using the Duhamel integral, to find analytical solutions under more complex boundary conditions than the flow rate jump. At the same time, the solutions found completely coincide with the solutions based on the Duhamel integral, but in the course of the solution that we have found it is possible to avoid integration, which has a positive effect on the applicability of this approach in the practice of engineering calculations.\",\"PeriodicalId\":52141,\"journal\":{\"name\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1029-7448-2021-64-5-426-458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1029-7448-2021-64-5-426-458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

Abstaract。研究了描述管道中实际气体非定常等温流动的偏微分方程组的解析解。在研究主要天然气管道中压力和流量瞬时值的变化规律时,例如在大型用气企业的启动和关闭期间,就会出现这样的问题。同时,瞬态并不一定具有明显的振荡性质,尽管它们是由周期函数描述的。在研究过程中,任务被设定为获得考虑运动方程惯性项的过程的数学模型,只有当摩擦损失超过冲击压力的3.5-4倍时,才有可能忽略惯性项。所找到的解的一个重要特点是它的通用性,这使得用它来求边界条件不同的实际问题的部分解时,可以显著降低人工成本。第一类边界条件是气体流速和压力的任意函数。该方法是基于广泛使用的傅立叶变量分离方法。为了简化计算,对原微分方程进行了变换,使边界条件具有齐次性。已经确定,在引入解的初始时刻,边界条件等于零的要求,使所得到的分析模型有可能得到简明的记录,但不限制该模型在气体流速或压力发生急剧变化时的使用范围。所得到的非定常气体流动的解析模型使得在不使用Duhamel积分的情况下,可以求出比流速跳变更复杂的边界条件下的解析解。同时,求得的解与基于Duhamel积分的解完全重合,但在求得解的过程中可以避免积分,这对该方法在工程计算实践中的适用性有积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for Calculating Transients in a Gas Pipeline
Abstaract. An analytical solution of a system of partial differential equations describing the unsteady isothermal flow of real gases in gas pipelines is considered. Such a problem arises when studying the regularity of alterations in the instantaneous values of pressure and gas flow in main gas pipelines, for example, during startups and shutdowns of large gas consumers. Meanwhile, transients are not necessarily of a pronounced oscillatory nature, despite the fact that they are described by periodic functions. In the course of the research, the task was set to obtain a mathematical model of the process taking into account the inertial term of the equation of motion, the neglect of which is possible only if the friction losses are exceeded by 3.5–4 times over the shock pressure. An important feature of the solution that have been found is its universality, which makes it possible to significantly reduce labor costs when using it to find partial solutions to practical problems that differ in boundary conditions. The boundary conditions of the first kind are given as an arbitrary function of both the gas flow rate and its pressure. The solution is based on the widely used method of separation of Fourier variables. In order to simplify the calculations, the original differential equation is transformed in such a way that the boundary conditions acquire the property of homogeneity. It has been determined that the requirements that the boundary conditions are equal to zero at the initial moment of time introduced into the solution make it possible to obtain a concise record of the obtained analytical model, but do not limit the area of the use of the model with a surge change in the gas flow rate or pressure. The obtained analytical model of unsteady gas flow makes it possible, without using the Duhamel integral, to find analytical solutions under more complex boundary conditions than the flow rate jump. At the same time, the solutions found completely coincide with the solutions based on the Duhamel integral, but in the course of the solution that we have found it is possible to avoid integration, which has a positive effect on the applicability of this approach in the practice of engineering calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
32
审稿时长
8 weeks
期刊介绍: The most important objectives of the journal are the generalization of scientific and practical achievements in the field of power engineering, increase scientific and practical skills as researchers and industry representatives. Scientific concept publications include the publication of a modern national and international research and achievements in areas such as general energetic, electricity, thermal energy, construction, environmental issues energy, energy economy, etc. The journal publishes the results of basic research and the advanced achievements of practices aimed at improving the efficiency of the functioning of the energy sector, reduction of losses in electricity and heat networks, improving the reliability of electrical protection systems, the stability of the energetic complex, literature reviews on a wide range of energy issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信