上同伦不变量和普适上同伦不变量跳跃公式

Q3 Mathematics
C. Okonek, A. Teleman
{"title":"上同伦不变量和普适上同伦不变量跳跃公式","authors":"C. Okonek, A. Teleman","doi":"10.5167/UZH-21451","DOIUrl":null,"url":null,"abstract":"Starting from ideas of Furuta, we develop a general formalism for the construction of cohomotopy invariants associated with a certain class of S 1 -equivariant non-linear maps between Hilbert bundles. Applied to the Seiberg-Witten map, this formalism yields a new class of cohomotopy Seiberg-Witten invariants which have clear functorial properties with respect to diffeomorphisms of 4-manifolds. Our invariants and the Bauer-Furuta classes are directly comparable for 4-manifolds with b1 =0 ;they are equivalent when b1 =0 and b+ > 1, but are finer in the case b1 =0 ,b+ =1 (they detect the wall-crossing phenomena). We study fundamental properties of the new invariants in a very general framework. In particular we prove a universal cohomotopy invariant jump formula and a multiplicative property. The formalism applies to other gauge theoretical problems, e.g. to the theory of gauge theoretical (Hamiltonian) Gromov-Witten invariants.","PeriodicalId":50143,"journal":{"name":"Journal of Mathematical Sciences-The University of Tokyo","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cohomotopy invariants and the universal cohomotopy invariant jump formula\",\"authors\":\"C. Okonek, A. Teleman\",\"doi\":\"10.5167/UZH-21451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from ideas of Furuta, we develop a general formalism for the construction of cohomotopy invariants associated with a certain class of S 1 -equivariant non-linear maps between Hilbert bundles. Applied to the Seiberg-Witten map, this formalism yields a new class of cohomotopy Seiberg-Witten invariants which have clear functorial properties with respect to diffeomorphisms of 4-manifolds. Our invariants and the Bauer-Furuta classes are directly comparable for 4-manifolds with b1 =0 ;they are equivalent when b1 =0 and b+ > 1, but are finer in the case b1 =0 ,b+ =1 (they detect the wall-crossing phenomena). We study fundamental properties of the new invariants in a very general framework. In particular we prove a universal cohomotopy invariant jump formula and a multiplicative property. The formalism applies to other gauge theoretical problems, e.g. to the theory of gauge theoretical (Hamiltonian) Gromov-Witten invariants.\",\"PeriodicalId\":50143,\"journal\":{\"name\":\"Journal of Mathematical Sciences-The University of Tokyo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Sciences-The University of Tokyo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5167/UZH-21451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sciences-The University of Tokyo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-21451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

从Furuta的思想出发,给出了一类希尔伯特束间s1 -等变非线性映射的上同伦不变量的构造的一般形式。应用于Seiberg-Witten映射,得到了一类新的关于4流形的微分同态具有明确函子性质的上同伦Seiberg-Witten不变量。对于b1 =0的4流形,我们的不变量和Bauer-Furuta类是直接可比较的;当b1 =0和b+ > 1时,它们是等价的,但在b1 =0,b+ =1的情况下,它们更精细(它们检测过壁现象)。我们在一个非常一般的框架下研究新不变量的基本性质。特别地,我们证明了一个普遍上同伦不变跳跃公式和一个乘法性质。这种形式也适用于其他规范理论问题,例如规范理论(哈密顿)Gromov-Witten不变量的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomotopy invariants and the universal cohomotopy invariant jump formula
Starting from ideas of Furuta, we develop a general formalism for the construction of cohomotopy invariants associated with a certain class of S 1 -equivariant non-linear maps between Hilbert bundles. Applied to the Seiberg-Witten map, this formalism yields a new class of cohomotopy Seiberg-Witten invariants which have clear functorial properties with respect to diffeomorphisms of 4-manifolds. Our invariants and the Bauer-Furuta classes are directly comparable for 4-manifolds with b1 =0 ;they are equivalent when b1 =0 and b+ > 1, but are finer in the case b1 =0 ,b+ =1 (they detect the wall-crossing phenomena). We study fundamental properties of the new invariants in a very general framework. In particular we prove a universal cohomotopy invariant jump formula and a multiplicative property. The formalism applies to other gauge theoretical problems, e.g. to the theory of gauge theoretical (Hamiltonian) Gromov-Witten invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: La política de la Revista de Ciencias Matemáticas de la Universidad de Tokio es publicar trabajos de investigación originales en las ciencias matemáticas, incluidas las matemáticas puras y aplicadas. Además, también es nuestra política publicar la revista en formato impreso, así como electrónicamente en Internet. Precisamente hablando, los manuscritos de más de un año están disponibles en nuestra página de inicio en formato PDF.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信