{"title":"上同伦不变量和普适上同伦不变量跳跃公式","authors":"C. Okonek, A. Teleman","doi":"10.5167/UZH-21451","DOIUrl":null,"url":null,"abstract":"Starting from ideas of Furuta, we develop a general formalism for the construction of cohomotopy invariants associated with a certain class of S 1 -equivariant non-linear maps between Hilbert bundles. Applied to the Seiberg-Witten map, this formalism yields a new class of cohomotopy Seiberg-Witten invariants which have clear functorial properties with respect to diffeomorphisms of 4-manifolds. Our invariants and the Bauer-Furuta classes are directly comparable for 4-manifolds with b1 =0 ;they are equivalent when b1 =0 and b+ > 1, but are finer in the case b1 =0 ,b+ =1 (they detect the wall-crossing phenomena). We study fundamental properties of the new invariants in a very general framework. In particular we prove a universal cohomotopy invariant jump formula and a multiplicative property. The formalism applies to other gauge theoretical problems, e.g. to the theory of gauge theoretical (Hamiltonian) Gromov-Witten invariants.","PeriodicalId":50143,"journal":{"name":"Journal of Mathematical Sciences-The University of Tokyo","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cohomotopy invariants and the universal cohomotopy invariant jump formula\",\"authors\":\"C. Okonek, A. Teleman\",\"doi\":\"10.5167/UZH-21451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from ideas of Furuta, we develop a general formalism for the construction of cohomotopy invariants associated with a certain class of S 1 -equivariant non-linear maps between Hilbert bundles. Applied to the Seiberg-Witten map, this formalism yields a new class of cohomotopy Seiberg-Witten invariants which have clear functorial properties with respect to diffeomorphisms of 4-manifolds. Our invariants and the Bauer-Furuta classes are directly comparable for 4-manifolds with b1 =0 ;they are equivalent when b1 =0 and b+ > 1, but are finer in the case b1 =0 ,b+ =1 (they detect the wall-crossing phenomena). We study fundamental properties of the new invariants in a very general framework. In particular we prove a universal cohomotopy invariant jump formula and a multiplicative property. The formalism applies to other gauge theoretical problems, e.g. to the theory of gauge theoretical (Hamiltonian) Gromov-Witten invariants.\",\"PeriodicalId\":50143,\"journal\":{\"name\":\"Journal of Mathematical Sciences-The University of Tokyo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Sciences-The University of Tokyo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5167/UZH-21451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sciences-The University of Tokyo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-21451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Cohomotopy invariants and the universal cohomotopy invariant jump formula
Starting from ideas of Furuta, we develop a general formalism for the construction of cohomotopy invariants associated with a certain class of S 1 -equivariant non-linear maps between Hilbert bundles. Applied to the Seiberg-Witten map, this formalism yields a new class of cohomotopy Seiberg-Witten invariants which have clear functorial properties with respect to diffeomorphisms of 4-manifolds. Our invariants and the Bauer-Furuta classes are directly comparable for 4-manifolds with b1 =0 ;they are equivalent when b1 =0 and b+ > 1, but are finer in the case b1 =0 ,b+ =1 (they detect the wall-crossing phenomena). We study fundamental properties of the new invariants in a very general framework. In particular we prove a universal cohomotopy invariant jump formula and a multiplicative property. The formalism applies to other gauge theoretical problems, e.g. to the theory of gauge theoretical (Hamiltonian) Gromov-Witten invariants.
期刊介绍:
La política de la Revista de Ciencias Matemáticas de la Universidad de Tokio es publicar trabajos de investigación originales en las ciencias matemáticas, incluidas las matemáticas puras y aplicadas. Además, también es nuestra política publicar la revista en formato impreso, así como electrónicamente en Internet. Precisamente hablando, los manuscritos de más de un año están disponibles en nuestra página de inicio en formato PDF.