{"title":"求解非线性方程组的另一种修正共轭梯度系数","authors":"M. K. Dauda, S. Usman, H. Ubale, M. Mamat","doi":"10.31580/ojst.v2i3.932","DOIUrl":null,"url":null,"abstract":"In mathematical term, the method of solving models and finding the best alternatives is known as optimization. Conjugate gradient (CG) method is an evolution of computational method in solving optimization problems. In this article, an alternative modified conjugate gradient coefficient for solving large-scale nonlinear system of equations is presented. The method is an improved version of the Rivaie et el conjugate gradient method for unconstrained optimization problems. The new CG is tested on a set of test functions under exact line search. The approach is easy to implement due to its derivative-free nature and has been proven to be effective in solving real-life application. Under some mild assumptions, the global convergence of the proposed method is established. The new CG coefficient also retains the sufficient descent condition. The performance of the new method is compared to the well-known previous PRP CG methods based on number of iterations and CPU time. Numerical results using some benchmark problems show that the proposed method is promising and has the best efficiency amongst all the methods tested.","PeriodicalId":19674,"journal":{"name":"Open Access Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Alternative Modified Conjugate Gradient Coefficient for Solving Nonlinear System of Equations\",\"authors\":\"M. K. Dauda, S. Usman, H. Ubale, M. Mamat\",\"doi\":\"10.31580/ojst.v2i3.932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mathematical term, the method of solving models and finding the best alternatives is known as optimization. Conjugate gradient (CG) method is an evolution of computational method in solving optimization problems. In this article, an alternative modified conjugate gradient coefficient for solving large-scale nonlinear system of equations is presented. The method is an improved version of the Rivaie et el conjugate gradient method for unconstrained optimization problems. The new CG is tested on a set of test functions under exact line search. The approach is easy to implement due to its derivative-free nature and has been proven to be effective in solving real-life application. Under some mild assumptions, the global convergence of the proposed method is established. The new CG coefficient also retains the sufficient descent condition. The performance of the new method is compared to the well-known previous PRP CG methods based on number of iterations and CPU time. Numerical results using some benchmark problems show that the proposed method is promising and has the best efficiency amongst all the methods tested.\",\"PeriodicalId\":19674,\"journal\":{\"name\":\"Open Access Journal of Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Access Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31580/ojst.v2i3.932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31580/ojst.v2i3.932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Alternative Modified Conjugate Gradient Coefficient for Solving Nonlinear System of Equations
In mathematical term, the method of solving models and finding the best alternatives is known as optimization. Conjugate gradient (CG) method is an evolution of computational method in solving optimization problems. In this article, an alternative modified conjugate gradient coefficient for solving large-scale nonlinear system of equations is presented. The method is an improved version of the Rivaie et el conjugate gradient method for unconstrained optimization problems. The new CG is tested on a set of test functions under exact line search. The approach is easy to implement due to its derivative-free nature and has been proven to be effective in solving real-life application. Under some mild assumptions, the global convergence of the proposed method is established. The new CG coefficient also retains the sufficient descent condition. The performance of the new method is compared to the well-known previous PRP CG methods based on number of iterations and CPU time. Numerical results using some benchmark problems show that the proposed method is promising and has the best efficiency amongst all the methods tested.