{"title":"低有效维数函数无约束全局优化的降维技术","authors":"C. Cartis, Adilet Otemissov","doi":"10.1093/IMAIAI/IAAB011","DOIUrl":null,"url":null,"abstract":"\n We investigate the unconstrained global optimization of functions with low effective dimensionality, which are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in Wang et al. (2016, J. Artificial Intelligence Res., 55, 361–387), we study a generic Random Embeddings for Global Optimization (REGO) framework that is compatible with any global minimization algorithm. Instead of the original, potentially large-scale optimization problem, within REGO, a Gaussian random, low-dimensional problem with bound constraints is formulated and solved in a reduced space. We provide novel probabilistic bounds for the success of REGO in solving the original, low effective-dimensionality problem, which show its independence of the (potentially large) ambient dimension and its precise dependence on the dimensions of the effective and embedding subspaces. These results significantly improve existing theoretical analyses by providing the exact distribution of a reduced minimizer and its Euclidean norm and by the general assumptions required on the problem. We validate our theoretical findings by extensive numerical testing of REGO with three types of global optimization solvers, illustrating the improved scalability of REGO compared with the full-dimensional application of the respective solvers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A dimensionality reduction technique for unconstrained global optimization of functions with low effective dimensionality\",\"authors\":\"C. Cartis, Adilet Otemissov\",\"doi\":\"10.1093/IMAIAI/IAAB011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We investigate the unconstrained global optimization of functions with low effective dimensionality, which are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in Wang et al. (2016, J. Artificial Intelligence Res., 55, 361–387), we study a generic Random Embeddings for Global Optimization (REGO) framework that is compatible with any global minimization algorithm. Instead of the original, potentially large-scale optimization problem, within REGO, a Gaussian random, low-dimensional problem with bound constraints is formulated and solved in a reduced space. We provide novel probabilistic bounds for the success of REGO in solving the original, low effective-dimensionality problem, which show its independence of the (potentially large) ambient dimension and its precise dependence on the dimensions of the effective and embedding subspaces. These results significantly improve existing theoretical analyses by providing the exact distribution of a reduced minimizer and its Euclidean norm and by the general assumptions required on the problem. We validate our theoretical findings by extensive numerical testing of REGO with three types of global optimization solvers, illustrating the improved scalability of REGO compared with the full-dimensional application of the respective solvers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/IMAIAI/IAAB011\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/IMAIAI/IAAB011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A dimensionality reduction technique for unconstrained global optimization of functions with low effective dimensionality
We investigate the unconstrained global optimization of functions with low effective dimensionality, which are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in Wang et al. (2016, J. Artificial Intelligence Res., 55, 361–387), we study a generic Random Embeddings for Global Optimization (REGO) framework that is compatible with any global minimization algorithm. Instead of the original, potentially large-scale optimization problem, within REGO, a Gaussian random, low-dimensional problem with bound constraints is formulated and solved in a reduced space. We provide novel probabilistic bounds for the success of REGO in solving the original, low effective-dimensionality problem, which show its independence of the (potentially large) ambient dimension and its precise dependence on the dimensions of the effective and embedding subspaces. These results significantly improve existing theoretical analyses by providing the exact distribution of a reduced minimizer and its Euclidean norm and by the general assumptions required on the problem. We validate our theoretical findings by extensive numerical testing of REGO with three types of global optimization solvers, illustrating the improved scalability of REGO compared with the full-dimensional application of the respective solvers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.