{"title":"基于集成学习方法的信用风险参数估计——基于违约损失的实证研究","authors":"Han Sheng Sun, Zi Jin","doi":"10.21314/jcr.2016.212","DOIUrl":null,"url":null,"abstract":"In credit risk modeling, banks and insurance companies routinely use a single model for estimating key risk parameters. Combining several models to make a final prediction is not often considered. Using an ensemble or a collection of models rather than a single model can improve the accuracy and robustness of prediction results. In this study, we investigate two well-established ensemble learning methods (stochastic gradient boosting and random forest) and propose two new ensembles (ensemble by partial least squares and bag-boosting) in the application of predicting the loss given default. We demonstrate that an ensemble approach significantly increases the discriminatory power of the model compared with a single decision tree. In addition, the ensemble learning methods can be applied directly to predicting the exposure at default and probability of default with some simple modifications. The proposed approaches introduce a novel modeling framework that banks and other financial institutions can use to estimate and validate credit risk parameters based on the internal data of different portfolios. Moreover, the proposed approaches can be readily extended to general portfolio risk modeling in the areas of regulatory capital and economic capital management, loss forecasting, stress testing and pre-provision net revenue projections.","PeriodicalId":44244,"journal":{"name":"Journal of Credit Risk","volume":"11 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2016-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Estimating Credit Risk Parameters Using Ensemble Learning Methods: An Empirical Study on Loss Given Default\",\"authors\":\"Han Sheng Sun, Zi Jin\",\"doi\":\"10.21314/jcr.2016.212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In credit risk modeling, banks and insurance companies routinely use a single model for estimating key risk parameters. Combining several models to make a final prediction is not often considered. Using an ensemble or a collection of models rather than a single model can improve the accuracy and robustness of prediction results. In this study, we investigate two well-established ensemble learning methods (stochastic gradient boosting and random forest) and propose two new ensembles (ensemble by partial least squares and bag-boosting) in the application of predicting the loss given default. We demonstrate that an ensemble approach significantly increases the discriminatory power of the model compared with a single decision tree. In addition, the ensemble learning methods can be applied directly to predicting the exposure at default and probability of default with some simple modifications. The proposed approaches introduce a novel modeling framework that banks and other financial institutions can use to estimate and validate credit risk parameters based on the internal data of different portfolios. Moreover, the proposed approaches can be readily extended to general portfolio risk modeling in the areas of regulatory capital and economic capital management, loss forecasting, stress testing and pre-provision net revenue projections.\",\"PeriodicalId\":44244,\"journal\":{\"name\":\"Journal of Credit Risk\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Credit Risk\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/jcr.2016.212\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Credit Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jcr.2016.212","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Estimating Credit Risk Parameters Using Ensemble Learning Methods: An Empirical Study on Loss Given Default
In credit risk modeling, banks and insurance companies routinely use a single model for estimating key risk parameters. Combining several models to make a final prediction is not often considered. Using an ensemble or a collection of models rather than a single model can improve the accuracy and robustness of prediction results. In this study, we investigate two well-established ensemble learning methods (stochastic gradient boosting and random forest) and propose two new ensembles (ensemble by partial least squares and bag-boosting) in the application of predicting the loss given default. We demonstrate that an ensemble approach significantly increases the discriminatory power of the model compared with a single decision tree. In addition, the ensemble learning methods can be applied directly to predicting the exposure at default and probability of default with some simple modifications. The proposed approaches introduce a novel modeling framework that banks and other financial institutions can use to estimate and validate credit risk parameters based on the internal data of different portfolios. Moreover, the proposed approaches can be readily extended to general portfolio risk modeling in the areas of regulatory capital and economic capital management, loss forecasting, stress testing and pre-provision net revenue projections.
期刊介绍:
With the re-writing of the Basel accords in international banking and their ensuing application, interest in credit risk has never been greater. The Journal of Credit Risk focuses on the measurement and management of credit risk, the valuation and hedging of credit products, and aims to promote a greater understanding in the area of credit risk theory and practice. The Journal of Credit Risk considers submissions in the form of research papers and technical papers, on topics including, but not limited to: Modelling and management of portfolio credit risk Recent advances in parameterizing credit risk models: default probability estimation, copulas and credit risk correlation, recoveries and loss given default, collateral valuation, loss distributions and extreme events Pricing and hedging of credit derivatives Structured credit products and securitizations e.g. collateralized debt obligations, synthetic securitizations, credit baskets, etc. Measuring managing and hedging counterparty credit risk Credit risk transfer techniques Liquidity risk and extreme credit events Regulatory issues, such as Basel II, internal ratings systems, credit-scoring techniques and credit risk capital adequacy.