多变量函数的偏导数抽样展开式

S. Norvidas
{"title":"多变量函数的偏导数抽样展开式","authors":"S. Norvidas","doi":"10.2298/FIL2010339N","DOIUrl":null,"url":null,"abstract":"Let $B^p_{\\sigma}$, $1\\le p 0$, denote the space of all $f\\in L^p(\\mathbb{R})$ such that the Fourier transform of $f$ (in the sense of distributions) vanishes outside $[-\\sigma,\\sigma]$. The classical sampling theorem states that each $f\\in B^p_{\\sigma}$ may be reconstructed exactly from its sample values at equispaced sampling points $\\{\\pi m/\\sigma\\}_{m\\in\\mathbb{Z}} $ spaced by $\\pi /\\sigma$. Reconstruction is also possible from sample values at sampling points $\\{\\pi \\theta m/\\sigma\\}_m $ with certain $1< \\theta\\le 2$ if we know $f(\\theta\\pi m/\\sigma) $ and $f'(\\theta\\pi m/\\sigma)$, $m\\in\\mathbb{Z}$. In this paper we present sampling series for functions of several variables. These series involves samples of functions and their partial derivatives.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a sampling expansion with partial derivatives for functions of several variables\",\"authors\":\"S. Norvidas\",\"doi\":\"10.2298/FIL2010339N\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $B^p_{\\\\sigma}$, $1\\\\le p 0$, denote the space of all $f\\\\in L^p(\\\\mathbb{R})$ such that the Fourier transform of $f$ (in the sense of distributions) vanishes outside $[-\\\\sigma,\\\\sigma]$. The classical sampling theorem states that each $f\\\\in B^p_{\\\\sigma}$ may be reconstructed exactly from its sample values at equispaced sampling points $\\\\{\\\\pi m/\\\\sigma\\\\}_{m\\\\in\\\\mathbb{Z}} $ spaced by $\\\\pi /\\\\sigma$. Reconstruction is also possible from sample values at sampling points $\\\\{\\\\pi \\\\theta m/\\\\sigma\\\\}_m $ with certain $1< \\\\theta\\\\le 2$ if we know $f(\\\\theta\\\\pi m/\\\\sigma) $ and $f'(\\\\theta\\\\pi m/\\\\sigma)$, $m\\\\in\\\\mathbb{Z}$. In this paper we present sampling series for functions of several variables. These series involves samples of functions and their partial derivatives.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/FIL2010339N\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/FIL2010339N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $B^p_{\sigma}$, $1\le p 0$,表示所有的空间 $f\in L^p(\mathbb{R})$ 的傅里叶变换 $f$ (在分布的意义上)在外部消失 $[-\sigma,\sigma]$. 经典的抽样定理表明 $f\in B^p_{\sigma}$ 可以精确地从其在等步采样点的采样值重建吗 $\{\pi m/\sigma\}_{m\in\mathbb{Z}} $ 间隔 $\pi /\sigma$. 从采样点的采样值也可以进行重建 $\{\pi \theta m/\sigma\}_m $ 当然 $1< \theta\le 2$ 如果我们知道 $f(\theta\pi m/\sigma) $ 和 $f'(\theta\pi m/\sigma)$, $m\in\mathbb{Z}$. 本文给出了多变量函数的抽样级数。这些级数涉及函数的样本和它们的偏导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a sampling expansion with partial derivatives for functions of several variables
Let $B^p_{\sigma}$, $1\le p 0$, denote the space of all $f\in L^p(\mathbb{R})$ such that the Fourier transform of $f$ (in the sense of distributions) vanishes outside $[-\sigma,\sigma]$. The classical sampling theorem states that each $f\in B^p_{\sigma}$ may be reconstructed exactly from its sample values at equispaced sampling points $\{\pi m/\sigma\}_{m\in\mathbb{Z}} $ spaced by $\pi /\sigma$. Reconstruction is also possible from sample values at sampling points $\{\pi \theta m/\sigma\}_m $ with certain $1< \theta\le 2$ if we know $f(\theta\pi m/\sigma) $ and $f'(\theta\pi m/\sigma)$, $m\in\mathbb{Z}$. In this paper we present sampling series for functions of several variables. These series involves samples of functions and their partial derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信